Skip to main content
Log in

Synthesis of Pt, Pd, Pt/Ag and Pd/Ag nanoparticles by microwave-polyol method

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Pt, Pd, Pt-Ag and Pd-Ag bimetallic nanoparticles were synthesized in ethylene glycol and glycerol using the microwave technique in the presence of a stabilizer poly(N-vinylpyrrolidone) (PVP). It has been observed that PVP is capable of complexing and stabilizing nanoparticles. Mixed clusters were formed by simultaneous reduction of the metal ions. The clusters were characterized using UV-Vis spectra, XRD and dynamic light scattering. To understand the mechanism of formation of mixed nanoparticles, several experimental parameters such asin situ irradiation of mixed metal salts and mixing of individual sols were attempted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Daniel M C and Astruc D 2004Chem. Soc. Rev. 104 293

    CAS  Google Scholar 

  2. Schmid G 1992Chem. Rev. 92 1709

    Article  CAS  Google Scholar 

  3. Lewis L N 1993Chem. Rev. 93 2693

    Article  CAS  Google Scholar 

  4. Underwood S and Mulvaney P 1994Langmuir 10 3427

    Article  CAS  Google Scholar 

  5. Hostetler M J, Zhong C J, Yen BKH, Anderegg J, Gross S M, Evans N D, Porter M and Murray R W 1998J. Am. Chem. Soc. 120 9396

    Article  CAS  Google Scholar 

  6. Belloni J, Amblard J, Marignier L and Mostafavi M 1994Cluster of atoms and molecules (ed.) H Haberland (New York: Springer-Verlag) vol. 2, p. 290

    Google Scholar 

  7. Henglein A 1989Chem. Rev. 89 1861;

    Article  CAS  Google Scholar 

  8. Henglein A and Meisel D 1998J. Phys. Chem. B102 8364

    Google Scholar 

  9. Mulvaney P 1996Langmuir 12 788

    Article  CAS  Google Scholar 

  10. Dimitrijevic N M, Bartels D M, Jonah C D, Takahashi K and Rajh T 2001J. Phys. Chem. B105 954

    Google Scholar 

  11. Harada M, Asakura K, Ueki Y and Toshima N 1993J.Phys. Chem. 97 5103

    Article  CAS  Google Scholar 

  12. Sun S, Murry C B, Weller D, Folks L and Moser 1989Science 287 2000

    Google Scholar 

  13. Yonezawa T and Toshima N 1995J. Chem. Soc. Farady Trans. 91 4111

    Article  CAS  Google Scholar 

  14. Link S, Wang S Z L and El-Sayed M A 1999J. Phys. Chem. B103 3529

    Google Scholar 

  15. Esumi K, Shiratori M, Ishizuka H, Tano T, Torigoe K and Meguro K 1991Langmuir 7 457

    Article  CAS  Google Scholar 

  16. Silvert P Y, Vijaykrishnan V, Vibert P, HerreraUrbina R and Elhsissen K T 1996Nanostruct. Mater. 7611

  17. Liz-Marzan L M and Philipse A P 1995J. Phys. Chem. 99 15120

    Article  CAS  Google Scholar 

  18. Sato T, Kurado S, Takami A, Yonezawa Y and Hada H1991Appl. Organomet. Chem. 5 261

    Article  CAS  Google Scholar 

  19. Marignier J L, Belloni J, Delcourt M O and Chevalier J P 1985Nature (London) 317 344

    Article  CAS  Google Scholar 

  20. Hodak J H, Henglein A, Giersig M and Hartland G V 2000J. Phys. Chem. B104 11708

    Google Scholar 

  21. Chen Y and Yeh C S 2000Chem. Commun. 371

  22. Remita S, Mostafavi M and Delcourt M O 1996Radiat. Phys. Chem. 47 275

    Article  CAS  Google Scholar 

  23. Belloni J, Mostafavi M, Remita S, Marignier J L and Delcourt M O 1998New J. Chem. 1239

  24. Wang Y and Toshima N 1997J. Phys. Chem. B101 5301

    Google Scholar 

  25. Schmid G, West H, Malm J O, Bovin J O and Grenthe C 1996Chem. Eur. J. 2 1099

    Article  CAS  Google Scholar 

  26. Toshima N, Yonezawa T and Kushihashi K 1993J. Chem. Soc., Faraday Trans. 89 2537

    Article  CAS  Google Scholar 

  27. Yonezawa T and Toshima N N 1993J. Mol. Catal. 83 167

    Article  CAS  Google Scholar 

  28. Toshima N and Hirakawa K 1997Appl. Surf. Sci. 121/122 534

    Article  CAS  Google Scholar 

  29. Torigoe K, Nakajima Y and Esumi K 1993J. Phys. Chem. 97 8304

    Article  CAS  Google Scholar 

  30. Creighton J A and Eadon D G 1991J. Chem. Soc. Farady Trans. 87 3881

    Article  CAS  Google Scholar 

  31. Doudna C M, Bertino M F, Blum F D, Tokuhiro A T, Lahiri-Dey D, Chattopadhyay S and Terry J 2003J. Phys. Chem. B107 2996

    Google Scholar 

  32. Yasuda H and Mori H 1992Phys. Rev. Lett. 69 3747

    Article  CAS  Google Scholar 

  33. Mostafavi M, Marignier J L, Amblard J and Belloni J 1989Radiat. Phys. Chem. 34 605

    Google Scholar 

  34. Wong W, Efrima S and Regev O 1989Langmuir 14 602

    Article  Google Scholar 

  35. Petit C, Lixon P and Pileni M P 1993J. Phys. Chem. 97 12974;

    Article  CAS  Google Scholar 

  36. Pileni M P 1997Langmuir 13 3266;

    Article  CAS  Google Scholar 

  37. Pileni M P 1993J. Phys. Chem. 97 6961

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, K., Kapoor, S., Dave, D.P. et al. Synthesis of Pt, Pd, Pt/Ag and Pd/Ag nanoparticles by microwave-polyol method. J Chem Sci 117, 311–316 (2005). https://doi.org/10.1007/BF02708443

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02708443

Keywords

Navigation