Skip to main content
Log in

Anisotropic interpolation error estimates for isoparametric quadrilateral finite elements

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Anisotropic local interpolation error estimates are derived for quadrilateral and hexahedral Lagrangian finite elements with straight edges. These elements are allowed to have diameters with different asymptotic behaviour in different space directions. The case of affine elements (parallel-epipeds) with arbitrarily high degree of the shape functions is considered first. Then, a careful examination of the multi-linear map leads to estimates for certain classes of more general, isoparametric elements. As an application, the Galerkin finite element method for a reaction diffusion problem in a polygonal domain is considered. The boundary layers are resolved using anisotropic trapezoidal elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apel, Th., Dobrowolski, M.: Anisotropic interpolation with applications to the finite element method. Computing47, 277–293 (1992).

    Article  MathSciNet  Google Scholar 

  2. Apel, Th., Lube, G.: Local inequalities for anisotropic finite elements and their application to convection-diffusion problems. Preprint SPC94 _ 26, TU Chemnitz-Zwickau, 1994.

  3. Apel, Th., Lube, G.: Anisotropic mesh refinement in stabilized Galerkin methods. Number. Math.74, 261–282 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  4. Apel, Th., Lube, G.: Anisotropic mesh refinement for singularly perturbed reaction diffusion problems. Preprint SFB393/96-11, TU Chemnitz-Zwickau, 1996 (revised version will appear in Appl. Numer. Math.)

  5. Babuška, I., Aziz, A. K.: On the angle condition in the finite element method. SIAM J. Numer. Anal.13, 214–226 (1976).

    Article  MathSciNet  Google Scholar 

  6. Bernardi, C.: Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal.26, 1212–1240 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  7. Ciarlet, P., Raviart, P.-A.: Interpolation theory over curved elements with applications to the finite element method. Comput. Meth. Appl. Mech. Eng.1, 217–249 (1972).

    Article  MathSciNet  Google Scholar 

  8. Ciarlet, P. G.: The finite element method for elliptic problems. Amsterdam: North-Holland 1978.

    MATH  Google Scholar 

  9. Girault, V., Raviart, P.-A.: Finite element methods for Navier-Stokes equations, Theory and algorithms. Springer Series in Computational Mathematics, Vol. 5. Berlin Heidelberg New York Tokyo: Springer 1986.

    MATH  Google Scholar 

  10. Jamet, P.: Estimations d’erreur pour des éléments finis droits presque dégénérés. R.A.I.R.O. Anal. Numér.10, 43–61 (1976).

    MathSciNet  Google Scholar 

  11. Kornhuber, R., Roitzsch, R.: On adaptive grid refinement in the presence of internal and boundary layers. IMPACT of Computing Sci. Eng.2, 40–72 (1990).

    Article  Google Scholar 

  12. Kunert, G.: Error estimation for anisotropic tetrahedral and triangular finite element meshes. Preprint SFB393/97-17, TU Chemnitz, 1997.

  13. Křížek, M.: On semiregular families of triangulations and linear interpolation. Appl. Math.36, 223–232 (1991).

    MathSciNet  Google Scholar 

  14. Křížek, M.: On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal.29, 513–520 (1992).

    Article  MathSciNet  Google Scholar 

  15. Lang, J.: An adaptive finite element method for convection-diffusion problems by interpolation techniques. Technical Report TR 91-4, ZIB Berlin, 1991.

  16. Maden, N., Stynes, M.: Efficient generation of oriented meshes for solving convection diffusion problems. Technical report, University College Cork, Ireland, 1996.

    Google Scholar 

  17. Maischak, M.: hp-Methoden für Randintegralgleichungen bei 3D-Problemen, Theorie und Implementierung. PhD thesis, Universität Hannover, 1996.

  18. Oganesyan, L. A., Rukhovets, L. A.: Variational-difference methods for the solution of elliptic equations. Izd. Akad. Nauk Armyanskoi SSR, Jerevan, 1979. (in Russian)

    Google Scholar 

  19. von Petersdorff, T.: Randwertprobleme der Elastizitätstheorie für Polyeder — Singularitäten und Approximationen mit Randelementmethoden. PhD thesis, TH Darmstadt, 1989.

  20. Rachowicz, W.P.: An anisotropic h-type mesh refinement strategy. Comput. Methods Appl. Mech. Eng.109, 169–181 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  21. Shishkin, G. I.: Mesh approximations of singularly perturbed elliptic and parabolic problems. Russ. Acad. Sci., Ekaterinburg, 1992. (in Russian)

    Google Scholar 

  22. Siebert, K.: An a posteriori error estimator for anisotropic refinement. Numer. Math.73, 373–398 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  23. Synge, J. L.: The hypercircle in mathematical physics. Cambridge: Cambridge University Press 1957.

    MATH  Google Scholar 

  24. Xenophontos, Chr.: The hp finite element method for singularly perturbed problems. PhD thesis, University of Maryland, 1996.

  25. Ženíšek, A., Vanmaele, M.: The interpolation theorem for narrow quadrilateral isoparametric finite elements. Numer. Math.72, 123–141 (1995).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apel, T. Anisotropic interpolation error estimates for isoparametric quadrilateral finite elements. Computing 60, 157–174 (1998). https://doi.org/10.1007/BF02684363

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684363

AMS Subject Classifications

Key words

Navigation