Skip to main content
Log in

Effects of oxygen, insulin, and glucagon concentrations on rat submandibular acini in serum-free primary culture

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The objective of these studies was to develop serum-free culture conditions for dissociated acini from rat submandibular glands. Acini were isolated from the submandibular glands of 42–46 d old rats and cultured on reconstituted rat tail collagen containing laminin in 1:1 Ham’s F12 and Dulbecco’s media, supplemented with BSA, transferrin, insulin, T3, EGF, dexamethasone, retinoic acid, carbamylcholine, and trace elements, and gassed with 50% O2. The acini became partly embedded in the collagen gel and rapidly enlarged throughout the first 22 d of culture, maintaining modest seromucous acinar differentiation, as judged morphologically and by mucin secretion. Parallel cultures then were grown under 20, 35, 50, and 65% O2, and evaluated morphologically and by DNA content. Growth and retention of seromucous acinar characteristics were best with 35% O2, but lipid accumulation and cell death were unacceptably high. A spectrum of concentrations of insulin and glucagon then were tried. With 0.05µg/ml insulin, cellular growth and organization were orderly, lipid accumulations were not excessive, and moderate differentiation was retained through 15 d of culture. With more than 0.1µg/ml insulin added to or subtracted from the optimum, the detrimental effects recurred. Addition of sufficient glucagon counteracted the effects of both optimum and excessive concentrations of insulin. We now have achieved an orderly growth of moderately differentiated rat submandibular acini for 15 d in serum-free primary culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arias, A. E.; Bendayan, M. Secretagogue induction of cell differentiation in pancreatic acinar cells in vitro. Exp. Cell Res. 195:199–206; 1991.

    Article  PubMed  CAS  Google Scholar 

  2. Ball, W. D.; Redman, R. S. Two independently regulated secretory systems within the acini of the submandibular gland of the perinatal rat. Eur. J. Cell Biol. 33:112–122; 1984.

    PubMed  CAS  Google Scholar 

  3. Barer, R.; Om’iniabohs, F. Structural changes in the parotid gland induced by lipid diets. J. Physiol. (London) 248:30P-32P; 1975.

    Google Scholar 

  4. Barka, T.; Yagil, C.; van der Noen, H., et al. Induction of the synthesis of a specific protein in rat submandibular gland by isoproterenol. Lab. Invest. 54:165–171; 1986.

    PubMed  CAS  Google Scholar 

  5. Bhathena, S. J.; Smith, S. S.; Voyles, N. R., et al. Studies on submaxillary gland immunoreactive glucagon. Biochem. Biophys. Res. Commun. 74:1574–1581; 1977.

    Article  PubMed  CAS  Google Scholar 

  6. Bogart, B. I.; Picarelli, J. Agonist-induced secretions and potassium release from rat submandibular gland slices. Am. J. Physiol. 235:C256-C268; 1978.

    CAS  Google Scholar 

  7. Brannon, P. M.; Hirschi, K.; Korc, M. Effects of epidermal growth factor, insulin and insulin-like growth factor I on rat pancreatic acinar cells cultured in serum-free medium. Pancreas 3:41–48; 1988.

    Article  PubMed  CAS  Google Scholar 

  8. Brannon, P. M.; Orrison, B. M.; Kretchmer, N. Primary cultures of rat pancreatic acinar cells in serum-free medium. In Vitro Cell. Dev. Biol. 21:6–14; 1985.

    Article  PubMed  CAS  Google Scholar 

  9. Cutler, L. S.; Chaudhry, A. P. Cytodifferentiation of the acinar cells of the rat submandibular gland. Dev. Biol. 41:31–41; 1974.

    Article  PubMed  CAS  Google Scholar 

  10. Durban, E. M. Mouse submandibular salivary epithelial cell growth and differentiation in long-term culture: influence of the extracellular matrix. In Vitro Cell. Dev. Biol. 26:33–43; 1990.

    Article  PubMed  CAS  Google Scholar 

  11. Fleming, N.; Teitelman, M.; Sturgess, J. M. The secretory response in dissociated acini from the rat submandibular gland. J. Morphol. 163:219–230; 1980.

    Article  PubMed  CAS  Google Scholar 

  12. Garrett, J. R.; Suleiman, A. M.; Anderson, L. C., et al. Secretory responses in granular ducts and acini of submandibular glands in vivo to parasympathetic or sympathetic nerve stimulation in rats. Cell Tissue Res. 264:117–126; 1991.

    Article  PubMed  CAS  Google Scholar 

  13. Hand, A. R.; Weiss, R. E. Effects of streptozotocin-induced diabetes on the rat parotid gland. Lab. Invest. 51:429–440; 1984.

    PubMed  CAS  Google Scholar 

  14. Johnson, D. A. Changes in rat parotid salivary proteins associated with liquid diet-induced gland atrophy and isoproterenol-induced gland enlargement. Arch. Oral Biol. 29:215–221; 1984.

    Article  PubMed  CAS  Google Scholar 

  15. Justice, J. D.; Brannon, P. M. Synthesis of amylase by cultured rat pancreatic acinar cells: effects of antecedent diet. J. Nutr. 119:805–812; 1989.

    PubMed  CAS  Google Scholar 

  16. Kiser, C. S.; Rahemtulla, F.; Månsson-Rahemtulla, B. Monolayer culture of rat parotid acinar cells without basement membrane substrates. In Vitro Cell. Dev. Biol. 26:878–888; 1990.

    Article  PubMed  CAS  Google Scholar 

  17. Klein, R. M. Acinar cell proliferation in the parotid and submandibular salivary glands of the neonatal rat. Cell Tissue Kinet. 15:187–195; 1982.

    PubMed  CAS  Google Scholar 

  18. Korc, M.; Sankaran, H.; Wong, K. Y., et al. Insulin receptors in isolated mouse pancreatic acini. Biochem. Biophys. Res. Commun. 84:293–299; 1978.

    Article  PubMed  CAS  Google Scholar 

  19. Kumegawa, M.; Yajima, T.; Maeda, N., et al. Synergistic effects of diet, thyroxine and glucocorticoid hormones on amylase activity in parotid glands of growing rats. Arch. Oral Biol. 26:631–633; 1981.

    Article  PubMed  CAS  Google Scholar 

  20. Kurth, B. E.; Hazen-Martin, D. J.; Sens, M. A., et al. Ultrastructural and immunohistochemical characterization of submandibular duct cells in culture and modification of outgrowth differentiation by manipulation of calcium ion concentration. In Vitro Cell. Dev. Biol. 24:593–600; 1988.

    Article  PubMed  CAS  Google Scholar 

  21. Lauren, P. A.; Sorvari, T. E. The histochemical specificity of mucicarmine in the identification of epithelial mucosubstances. Acta Histochem. 34:263–272; 1969.

    PubMed  CAS  Google Scholar 

  22. Lawrence, A. M.; Tan, S.; Hojvat, S., et al. Salivary gland hyperglycemic factor: an extrapancreatic source of glucagon-like material. Science 195:70–72; 1977.

    Article  PubMed  CAS  Google Scholar 

  23. Lawson, K. A. Morphogenesis and functional differentiation of the rat parotid gland in vivo and in vitro. J. Embryol. Exp. Morphol. 24:411–424; 1970.

    PubMed  CAS  Google Scholar 

  24. Leeson, C. R.; Jacoby, F. An electron microscopic study of the rat submaxillary gland during its post-natal development and in the adult. J. Anat. 93:287–295; 1959.

    PubMed  CAS  Google Scholar 

  25. Lefèbvre, P. J. Glucagon and adipose tissue lipolysis. In: Lefèbvre, P. J., ed. Handbook of experimental pharmacology, vol. 66/I, Glucagon I. Berlin: Springer-Verlag; 1983:419–440.

    Google Scholar 

  26. Logsdon, C. D.; Williams, J. A. Pancreatic acinar cells in monolayer culture: direct trophic effects of caerulein in vitro. Am. J. Physiol. 250:G440-G447; 1986.

    PubMed  CAS  Google Scholar 

  27. Lucas, D. R. The effect of hydrocortisone, oxygen tension and other factors on the survival of the submandibular, sublingual, parotid and exorbital lacrimal glands in organ culture. Exp. Cell Res. 55:229–242; 1969.

    Article  PubMed  CAS  Google Scholar 

  28. Miederer, S. E.; Schepp, W.; Dein, H.-J., et al. Effect of glucagon on adenylate cyclase activity and acid production of isolated human parietal cells. Klin. Wochenschr. 64:746–749; 1986.

    Article  PubMed  CAS  Google Scholar 

  29. Mowry, R. W. The special value of methods that color both acidic and vicinyl hydroxyl groups in the histochemical study of mucins. With revised directions for the colloidal iron stain, the use of Alcian blue 8Gx and their combinations with the periodic acid-Schiff reaction. Ann. NY Acad. Sci. 106:402–423; 1963.

    Article  CAS  Google Scholar 

  30. Oliver, C.; Waters, J. F.; Tolbert, C. T., et al. Growth of exocrine acinar cells on a reconstituted basement membrane gel. In Vitro Cell. Dev. Biol. 23:465–473; 1987.

    Article  PubMed  CAS  Google Scholar 

  31. Perez-Castillo, A.; Blázquez, E. Tissue distribution of glucagon, glucagon-like immunoreactivity, and insulin in the rat. Am. J. Physiol. 238:E258-E266; 1980.

    PubMed  CAS  Google Scholar 

  32. Quissell, D. O. Secretory response of dispersed rat submandibular cells. I. Potassium release. Am. J. Physiol. 238:C90-C98; 1980.

    PubMed  CAS  Google Scholar 

  33. Quissell, D. O.; Barzen, K. A. Secretory response of dispersed rat submandibular cells. II. Mucin secretion. Am. J. Physiol. 238:C99-C106; 1980.

    PubMed  CAS  Google Scholar 

  34. Quissell, D. O.; Barzen, K. A.; Lafferty, J. L. Role of calcium and cAMP in the regulation of rat submandibular mucin secretion. Am. J. Physiol. 241:C76-C85; 1981.

    PubMed  CAS  Google Scholar 

  35. Quissell, D. O.; Redman, R. S. Functional characteristics of dispersed rat submandibular cells. Proc. Natl. Acad. Sci. USA 76:2789–2793; 1979.

    Article  PubMed  CAS  Google Scholar 

  36. Quissell, D. O.; Redman, R. S.; Mark, M. R. Short-term primary culture of acinar-intercalated duct complexes from rat submandibular glands. In Vitro Cell. Dev. Biol. 22:469–480; 1986.

    PubMed  CAS  Google Scholar 

  37. Qwarnström, E. E.; Hand, A. R. A granular cell at the acinar-intercalated duct junction of the rat submandibular gland. Anat. Rec. 206:181–187; 1983.

    Article  Google Scholar 

  38. Redman, R. S. Myoepithelium of salivary glands. Microsc. Res. Tech. 27:25–45; 1994.

    Article  PubMed  CAS  Google Scholar 

  39. Redman, R. S.; Ball, W. D. Cytodifferentiation of secretory cells in the sublingual gland of the prenatal rat: a histological histochemical and ultrastructural study. Am. J. Anat. 153:367–390; 1978.

    Article  PubMed  CAS  Google Scholar 

  40. Redman, R. S.; Quissell, D. O.; Barzen, K. A. Effects of dexamethasone, epidermal growth factor, and retinoic acid on rat submandibular acinar-intercalated duct complexes in primary culture. In Vitro Cell. Dev. Biol. 24:734–742; 1988.

    Article  PubMed  CAS  Google Scholar 

  41. Redman, R. S.; Quissell, D. O. Isolation and maintenance of submandibular gland cells. In: Dobrosielski-Vergona, K., ed. Biology of the salivary glands. Boca Raton, FL: CRC Press; 1993:285–306.

    Google Scholar 

  42. Redman, R. S.; Sreebny, L. M. Proliferative behavior of differentiating cells in the developing rat parotid gland. J. Cell Biol. 46:81–87; 1970.

    Article  PubMed  CAS  Google Scholar 

  43. Reuterving, C. O.; Hägg, E.; Henriksson, R., et al. Salivary glands in long-term alloxan diabetic rats. A quantitative light and electron microscopic study. Acta Pathol. Microbiol. Immunol. Scand. A 95:131–136; 1987.

    PubMed  CAS  Google Scholar 

  44. Richards, G. M. Modifications in the diphenylamine reaction giving increasing sensitivity and simplicity in the estimation of DNA. Anal. Biochem. 57:369–376; 1974.

    Article  PubMed  CAS  Google Scholar 

  45. Richardson, K. C.; Jarett, L.; Finke, E. H. Embedding in epoxy resin for ultra thin sectioning in electron microscopy. Stain Technol. 35:313–321; 1960.

    PubMed  CAS  Google Scholar 

  46. Sabatini, L. M.; Allen-Hoffman, B. L.; Warner, T. F., et al. A serial cultivation of epithelial cells from human and macaque salivary glands. In Vitro Cell. Dev. Biol. 27A:939–948; 1991.

    Article  PubMed  CAS  Google Scholar 

  47. Sagulin, G. B.; Roomans, G. M. Effects of thyroxine and dexamethasone on rat submandibular glands. J. Dent. Res. 68:1247–1251; 1989.

    PubMed  CAS  Google Scholar 

  48. Sarles, J.; Lee, P.-C.; Lebenthal, E. The effect of cholecystokinin-octapeptide, insulin, glucagon, triiodothyronine, and epidermal growth factor on amylase activity in fetal pancreas in vitro. Pediatr. Res. 23:539–542; 1988.

    Article  PubMed  CAS  Google Scholar 

  49. Schneyer, C. A.; Hall, H. D. Autonomic regulation of postnatal changes in cell number and size of rat parotid. Am. J. Physiol. 219:1268–1272; 1970.

    PubMed  CAS  Google Scholar 

  50. Schneyer, C. A.; Hall, H. D. Autonomic regulation of changes in rat parotid amylase during postnatal development. Am. J. Physiol. 223:172–175; 1972.

    PubMed  CAS  Google Scholar 

  51. Silverman, P. H.; Dunbar, J. C. The submaxillary gland as a possible source of glucagon. Bull. Sinai Hosp. Detroit 22:192–193; 1974.

    Google Scholar 

  52. Simson, J. A. V.; Dom, R. M.; Sannes, P. L., et al. Morphology and cytochemistry of acinar secretory granules in normal and isoproterenol-treated submandibular glands. J. Microsc. 113:185–203; 1978.

    PubMed  CAS  Google Scholar 

  53. Smith, S.; Mazur, A.; Voyles, N., et al. Is submaxillary immunoreactive glucagon important in carbohydrate homeostasis? Metabolism 28:343–347; 1979.

    Article  PubMed  CAS  Google Scholar 

  54. Smith, P. H.; Toms, B. B. Immunocytochemical localization of insulin-and glucagon-like peptides in rat salivary glands. J. Histochem. Cytochem. 34:627–632; 1986.

    PubMed  CAS  Google Scholar 

  55. Srinivasan, R.; Chang, W. W. L. Effect of neonatal sympathectomy on the postnatal differentiation of the submandibular gland of the rat. Cell Tissue Res. 180:99–109; 1977.

    Article  PubMed  CAS  Google Scholar 

  56. Tapp, R. L. An attempt to maintain cultures from the submandibular gland of the adult rat in vitro. Exp. Cell Res. 47:536–544; 1967.

    Article  PubMed  CAS  Google Scholar 

  57. Tiengo, A.; Nosadini, R. Glucagon and lipoprotein metabolism. In: Lefèbvre, P. J., ed. Handbook of experimental pharmacology, vol. 66/I, Glucagon I. Berlin: Springer-Verlag; 1983:441–451.

    Google Scholar 

  58. Wigley, C. B.; Franks, L. M. Salivary epithelial cells in primary culture: characterization of their growth and functional properties. J. Cell Sci. 20:149–165; 1976.

    PubMed  CAS  Google Scholar 

  59. Yeh, C.-K.; Mertz, P. M.; Oliver, C., et al. Cellular characteristics of long-term cultured rat parotid acinar cells. In Vitro Cell. Dev. Biol. 27A:707–712; 1991.

    PubMed  CAS  Google Scholar 

  60. Zajicek, C.; Yagil, C.; Michaeli, Y. The streaming submandibular gland. Anat. Rec. 213:150–158; 1985.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quissell, D.O., Redman, R.S., Barzen, K.A. et al. Effects of oxygen, insulin, and glucagon concentrations on rat submandibular acini in serum-free primary culture. In Vitro Cell Dev Biol - Animal 30, 833–842 (1994). https://doi.org/10.1007/BF02639393

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02639393

Key words

Navigation