Skip to main content
Log in

Cultured trout liver cells: Utilization of substrates and response to hormones

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The characterization of a recently established system for the short-term culture of rainbow trout (Oncorhynchus mykiss) liver cells in chemically defined medium has been extended to studies on the metabolic competence of the cells and the characterization of their response to hormones. Three areas of metabolism have been addressed: a) the utilization of the exogenously added substrates fructose, lactate, glucose, dihydroxyacetone, and glycerol for glucose and lactate formation; b) the effects of the pancreatic hormones insulin and glucagon on cellular glucose formation, lactate formation, and fatty acid synthesis; and c) the effects of insulin and dexamethasone on the estradiol-dependent production of vitellogenin. Incubation of trout liver cells with fructose, lactate, glucose, dihydroxyacetone, or glycerol resulted in enhanced rates of cellular glucose and lactate production. Substrate-induced effects usually were more clearly expressed after extended (20 h) than after acute (5 h) culture periods. Addition of the hormones insulin or glucagon caused dose-dependent alterations in the flux of substrates to glucose and lactate. Rates of de novo synthesis of fatty acids from [14C]acetate were stimulated by insulin and inhibited by glucagon during acute and extended incubation periods. Treatment of liver cells isolated from male trout for 72 h with estradiol induced vitellogenin production and secretion into the medium. However, the addition of insulin or dexamethasone drastically reduced this estrogen-induced vitellogenesis. These results indicate that trout liver cells cultured in defined medium maintain central metabolic pathways, including glycolysis, gluconeogenesis, lipogenesis, and vitellogenesis as well as their responsiveness to various hormones, for at least 72 h. This cell culture system should provide an excellent model to further characterize metabolic processes in fish liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baksi, S. M.; Frazier, J. M. Isolated fish hepatocytes—model systems for toxicology research. Aquat. Toxicol. 16:229–256; 1990.

    Article  CAS  Google Scholar 

  • Bergmeyer, H. U. Methoden der enzymatischen Analyse. Weinheim: Verlag Chemie; 1974.

    Google Scholar 

  • Bisell, D. M.; Hammaker, L. E.; Meyer, V. A. Parenchymal cells from adult rat liver in non-proliferating monolayer culture. I. Functional studies. J. Cell Biol. 59:722–734; 1973.

    Article  Google Scholar 

  • Blair, J. B.; Miller, M. R.; Pack, D., et al. Isolated trout liver cells: establishing short-term primary cultures exhibiting cell-to-cell interactions. In Vitro Cell. Dev. Biol. 26:237–249; 1990.

    PubMed  CAS  Google Scholar 

  • Bligh, E. G.; Dyer, W. G. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911–917; 1959.

    PubMed  CAS  Google Scholar 

  • Bonney, R. J.; Becker, J. E.; Walker, P. R., et al. Primary monolayer cultures of adult rat liver parenchymal cells suitable for study of the regulation of enzyme synthesis. In Vitro 9:399–413; 1974.

    Article  CAS  Google Scholar 

  • Braunbeck, T.; Storch, V. Senescence of hepatocytes isolated from rainbow trout (Oncorhynchus mykiss) in primary culture: an ultrastructural study. Protoplasma 170:138–159; 1992.

    Article  Google Scholar 

  • Clark, D. G.; Rognstadt, R.; Katz, J. Lipogenesis in rat hepatocytes. J. Biol. Chem. 249:2028–2036; 1974.

    PubMed  CAS  Google Scholar 

  • Couch, J. A.; Harsbarger, J. C. Effects of carcinogenic agents on aquatic animals: an environmental and experimental overview. Environ. Carcinog. Rev. 3:63–105; 1985.

    Google Scholar 

  • Dawe, C. J., Harsbarger, J. C. Neoplasms and related disorders of invertebrates and lower vertebrate animals. Natl. Cancer Inst. Monogr. 31; 1969.

  • Foster, G. D.; Moon, T. W. Insulin and the regulation of glycogen metabolism and gluconeogenesis in American eel hepatocytes. Gen. Comp. Endocrinol. 73:374–381; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Foster, G. D.; Moon, T. W. Control of key carbohydrate-metabolizing enzymes by insulin and glucagon in freshly isolated hepatocytes of the marine teleostHemitripterus americanus. J. Exp. Zool. 254:55–62; 1990.

    Article  Google Scholar 

  • Harris, R. A.; Cornell, N. W., editors. Isolation, characterization and use of hepatocytes. New York: Elsevier Biomedical; 1983.

    Google Scholar 

  • Hinton, D. E.; Couch, J. A.; Teh, S. J., et al. Cytological changes during progression of neoplasia in selected fish species. Aquat. Toxicol. 11:77–112; 1988.

    Article  Google Scholar 

  • Ichihara, A.; Nakamura, T.; Tanaka, K. Use of hepatocytes in primary cultures for biochemical studies on liver functions. Mol. Cell. Biochem. 43:145–160; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Klaunig, J. E.; Ruch, R. J.; Goldblatt, P. J. Trout hepatocyte culture: isolation and primary culture. In Vitro Cell. Dev. Biol. 21:221–228; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Kletzien, R. F.; Stumpo, D. J.; Kelley, D. S., et al. Primary cultures of hepatocytes as a model system for studies on the chronic effects of hormones on hepatic carbohydrate metabolism. In: Harris, R. A.; Cornell, N. W., eds. Isolation, characterization and use of hepatocytes. New York: Elsevier Biomedical; 1983.

    Google Scholar 

  • Kocal, T.; Crane, T. L.; Quinn, B. A., et al. Use of trout serum to prepare primary attached monolayer cultures of hepatocytes from rainbow trout (Salmo gairdneri). In Vitro Cell. Dev. Biol. 24:304–308; 1988.

    Article  Google Scholar 

  • Lipsky, M. M.; Sheridan, T. R.; Bennett, R. O., et al. Comparison of trout hepatocyte culture on different substrates. In Vitro Cell. Dev. Biol. 22:360–362; 1986.

    Article  Google Scholar 

  • Masahito, P.; Ishikawa, T.; Sugano, H. Fish tumors and their importance in cancer research. Jpn. J. Cancer Res. (GANN) 79:545–555; 1988.

    CAS  Google Scholar 

  • Miller, M. R.; Blair, J. B.; Hinton, D. E. DNA repair synthesis in isolated rainbow trout liver cells. Carcinogenesis 10:995–1001; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Mommsen, T. P. Comparative gluconeogenesis in hepatocytes from salmonid fishes. Can. J. Zool. 64:1110–1115; 1986.

    CAS  Google Scholar 

  • Mommsen, T. P.; Moon, T. W. Metabolic response of teleost hepatocytes to glucagon-like peptide and glucagon. J. Endocrinol. 126:109–118; 1990.

    PubMed  CAS  Google Scholar 

  • Mommsen, T. P.; Plisetskaya, E. M. Insulin in fish and agnathans: history, structure and metabolic regulation. Rev. Aquat. Sci. 4:225–259; 1991.

    CAS  Google Scholar 

  • Moon, T. W. Adaptation, constraint, and the function of the gluconeogenic pathway. Can. J. Zool. 66:1059–1068; 1988.

    Article  CAS  Google Scholar 

  • Moon, T. W.; Walsh, P. J.; Mommsen, T. P. Fish hepatocytes: a model metabolic system. Can. J. Fish. Aquat. Sci. 42:1772–1782; 1985.

    CAS  Google Scholar 

  • Pariza, M. W.; Yager, J. D.; Goldfar, S. Biochemical, autoradiographic and electron microscopic studies of adult rat liver parenchymal cells in primary culture. In: Gerschenson, L. E.; Thompson, E. B., eds. Gene expression and carcinogenesis in cultured liver. New York: Academic Press; 1975: 137–167.

    Google Scholar 

  • Plisetskaya, E. M.; Fabbri, E.; Moon, T. W., et al. Insulin binding to isolated hepatocytes of Atlantic salmon and rainbow trout. Fish Physiol. Biochem. 11:401–409; 1993.

    Article  CAS  Google Scholar 

  • Seglen, P. O. Autoregulation of glycolysis, respiration, gluconeogenesis and glycogen synthesis in isolated parenchymal rat liver cells under aerobic and anaerobic conditions. Biochim. Biophys. Acta 338:317–336; 1974.

    CAS  Google Scholar 

  • Segner, H.; Böhm, R. Enzymes of lipogenesis. In: Hochachka, P. W.; Mommsen, T. P., eds. Biochemistry and molecular biology of fishes, vol. 3. Amsterdam: Elsevier; in press; 1994.

    Google Scholar 

  • Segner, H.; Böhm, R.; Kloas, W. Binding and bioactivity of insulin in primary cultures of carp (Cyprinus carpio) hepatocytes. Fish Physiol. Biochem. 11:411–420; 1993.

    Article  CAS  Google Scholar 

  • Shimeno, S.; Hosokawa, H.; Takeda, M. The importance of carbohydrate in the diet of a carnivorous fish. In: Tiews, K.; Halver, J. E., eds. Finfish nutrition and fishfeed technology, vol. 1. Berlin 1979: 127–143.

  • Suarez, P. K.; Mommsen, T. P. Gluconeogenesis in teleost fishes. Can. J. Zool. 65:1869–1882; 1987.

    Article  CAS  Google Scholar 

  • Wilson, R. P.; Poe, W. E. Apparent inability of channel catfish to utilize dietary mono- and disaccharides as energy source. J. Nutr. 117:280–285; 1987.

    PubMed  CAS  Google Scholar 

  • Yamada, S.; Otto, P. S.; Kennedy, D. L., et al. The effects of dexamethasone on metabolic activity of hepatocytes in primary monolayer culture. In Vitro 16:559–570; 1980.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segner, H., Blair, J.B., Wirtz, G. et al. Cultured trout liver cells: Utilization of substrates and response to hormones. In Vitro Cell Dev Biol - Animal 30, 306–311 (1994). https://doi.org/10.1007/BF02631451

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631451

Key words

Navigation