Skip to main content
Log in

Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels

  • Begular Papers
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

A new low shear stress microcarrier culture system has been developed at NASA’s Johnson Space Center that permits three-dimensional tissue culture. Two established human colon adenocarcinoma cell lines, HT-29, an undifferentiated, and HT-29KM, a stable, moderately differentiated subline of HT-29, were grown in new tissue culture bioreactors called Rotating-Wall Vessels (RWVs). RWVs are used in conjunction with multicellular cocultivation to develop a unique in vitro tissue modeling system. Cells were cultivated on Cytodex-3 microcarrier beads, with and without mixed normal human colonic fibroblasts, which served as the mesenchymal layer. Culture of the tumor lines in the absence of fibroblasts produced spheroidlike growth and minimal differentiation. In contrast, when tumor lines were co-cultivated with normal colonic fibroblasts, initial growth was confined to the fibroblast population until the microcarriers were covered. The tumor cells then commenced proliferation at an accelerated rate, organizing themselves into three-dimensional tissue masses that achieved 1.0- to 1.5-cm diameters. The masses displayed glandular structures, apical and internal glandular microvilli, tight intercellular junctions, desmosomes, cellular polarity, sinusoid development, internalized mucin, and structural organization akin to normal colon crypt development. Differentiated samples were subjected to transmission and scanning electron microscopy and histologic analysis, revealing embryoniclike mesenchymal cells lining the areas around the growth matrices. Necrosis was minimal throughout the tissue masses. These data suggest that the RWV affords a new model for investigation and isolation of growth, regulatory, and structural processes within neoplastic and normal tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blay, J.; Brown, K. D. Functional receptors for epidermal growth factor in an epithelial-cell line derived from the rat small intestine. Biochem. J. 225:85–94; 1985.

    PubMed  CAS  Google Scholar 

  2. Blay, J.; Brown, K. D. Epidermal growth factor promotes the chemotactic migration of cultured rat intestinal epithelial cells. J. Cell. Physiol. 124:107–112; 1985.

    Article  PubMed  CAS  Google Scholar 

  3. Blay, J.; Brown, K. D. Contradistinctive growth responses of cultured rat intestinal epithelial cells to epidermal growth factor depending on cell population density. J. Cell. Physiol. 129:343–346; 1986.

    Article  PubMed  CAS  Google Scholar 

  4. Bouziges, F.; Simon-Assmann, P.; Simo, P., et al. Changes in glycosaminoglycan expression in the rat developing intestine. Cell Biol. Int. Rep. 15:2:97–106; 1991.

    Article  PubMed  CAS  Google Scholar 

  5. Brattain, M. G.; Kimball, P. M.; Pretlow, T. G. 2d, et al. Partial purification of human colonic carcinoma cells by sedimentation. Br. J. Cancer 35:850–857; 1977.

    PubMed  CAS  Google Scholar 

  6. Buset, M.; Winawer, S.; Friedman, E. Defining conditions to promote the attachment of adult human colonic epithelial cells. In Vitro Cell. Dev. Biol. 23:403–412; 1987.

    Article  PubMed  CAS  Google Scholar 

  7. Chantret, I.; Barbat, A.; Dussaulx, E., et al. Epithelial polarity, villin expression, and enterocytic differentiation of cultured human colon carcinoma cells: a survey of twenty cell lines. Cancer Res. 48:1936–1942; 1988.

    PubMed  CAS  Google Scholar 

  8. Corps, A. N.; Brown, K. D. Stimulation of intestinal epithelial cell proliferation in culture by growth factors in human and ruminant mammary secretions. J. Endocrinol. 113:285–290; 1987.

    Article  PubMed  CAS  Google Scholar 

  9. Daneker, G. W., Jr.; Mercurio, A. M.; Guerra, L., et al. Laminin expression in colorectal carcinomas varying in degree of differentiation. Arch. Surg. 122:1470–1474; 1987.

    PubMed  Google Scholar 

  10. Durban, E. Mouse submandibular salivary epithelial cell growth and differentiation in long term culture: influence of the extracellular matrix. In Vitro Cell. Dev. Biol. 26:33–43; 1990.

    Article  PubMed  CAS  Google Scholar 

  11. El-Deriny, S. E.; O’Brien, M. J.; Christensen, T. G., et al. Ultrastructural differentiation and CEA expression of butyrate-treated human pancreatic carcinoma cells. Pancreas 2:25–33; 1987.

    Article  PubMed  CAS  Google Scholar 

  12. Fatini, J.; Galons, J-P.; Marvaldi, J., et al. Growth of human colonic adenocarcinoma cell line (HT 29) on microcarrier beads: metabolic studies by phosphorus nuclear magnetic resonance spectroscopy. Int. J. Cancer 39:255–260; 1987.

    Article  Google Scholar 

  13. Fogh, J.; Trempe, G. In: Fogh, J., ed. Human tumor cells in vitro. New York: Plenum Press; 1975:115–159.

    Google Scholar 

  14. Fukamachi, H.; Mizuno, T.; Kim, Y. S. Morphogenesis of human colon cancer cells with fetal rat mesenchymes in organ culture. Experientia 42 Birkhäuser Verlag, CH-4010 Basel/Switzerland; 1986.

    Google Scholar 

  15. Haake, A. R.; Lane, H. T. Retention of differentiated characteristics in human fetal keratinocytes. In Vitro Cell. Dev. Biol. 25:592–600; 1989.

    Article  PubMed  CAS  Google Scholar 

  16. Haffen, K.; Kédinger, M.; Simon-Assmann, P. Mesenchyme-dependent differentiation of epithelial progenitor cells in the gut. J. Pediatr. Gastroenterol. Nutr. 6:14–23; 1987.

    Article  PubMed  CAS  Google Scholar 

  17. Haffen, K.; Lacroix, B.; Kédinger, M., et al. Inductive properties of fibroblastic cell cultures derived from rat intestinal mucosa on epithelial differentiation. Differentiation 23:226–233; 1983.

    Article  PubMed  CAS  Google Scholar 

  18. Goodwin, T. J.; Jessup, J. M.; Sams, C., et al. In vitro three-dimensional tissue modeling. JSC Technology Annual Report. NASA Technical Memorandum 100473, Washington, DC.

  19. Jessup, J. M.; Giavazzi, R.; Campbell, D., et al. Growth potential of human colorectal carcinomas in nude mice: association with the preoperative serum concentration of carcinoembryonic antigen in patients. Cancer Res. 48:1689–1692; 1988.

    PubMed  CAS  Google Scholar 

  20. Kaye, G. I.; Pascal, R. R.; Lane, N. The colonic pericryptal fibroblast sheath: replication, migration, and cytodifferentiation of a mesenchymal cell system in adult tissue. 3. Replication and differentiation in human hyperplastic and adenomatous polyps. Gastroenterology 60:515–536; 1971.

    PubMed  CAS  Google Scholar 

  21. Kédlinger, M.; Simon, P. M.; Grenier, J. F., et al. Role of epithelial-mesenchymal interactions in the ontogenesis of intestinal brush-border enzymes. Dev. Biol. 86:339–347; 1981.

    Article  Google Scholar 

  22. Kédinger, M.; Simon-Assmann, P.; Alexandre, E., et al. Importance of a fibroblastic support for in vitro differentiation of intestinal endodermal cells and for their response to glucocorticoids. Cell Differ. 20:171–182; 1987.

    Article  PubMed  Google Scholar 

  23. Kédinger, M.; Simon-Assmann, P.; Lacroix, B., et al. Fetal gut mesenchyme induces differentiation of cultured intestinal endodermal and crypt cells. Dev. Biol. 113:474–483; 1986.

    Article  PubMed  Google Scholar 

  24. Kleinman, D.; Sharon, Y.; Sarov, I., et al. Human endometrium in cell culture: a new method for culturing human endometrium as separate epithelial and stromal components. Arch. Gynecol. Obstet. 234:103–112; 1983.

    CAS  Google Scholar 

  25. Luna, L. G.; editor. Histologic staining methods. Armed Forces Institute of Pathology. American Registry of Pathology, 3rd. ed. New York, London; 1968.

    Google Scholar 

  26. Moyer, M. P.; Dixon, P. S.; Culpepper, A. L., et al. In: Moyer, M. P.; Poste, G. H., eds. Colon cancer cells. New York: Academic Press; 1990:85–136.

    Google Scholar 

  27. O’Loughlin, E. V.; Chung, M.; Hollenberg, M., et al. Effect of epidermal growth factor on ontogeny of the gastrointestinal tract. Am. J. Physiol. 249:674–678; 1985.

    Google Scholar 

  28. Phillips, T. E.; Huet, C.; Bilbo, P. R., et al. Human intestinal goblet cells in monolayer culture: characterization of a mucus-secreting subclone derived from the HT29 colon adenocarcinoma cell line. Gastroenterology 94:1390–1403; 1988.

    PubMed  CAS  Google Scholar 

  29. Pinto, M.; Appay, M-D.; Simon-Assmann, P., et al. Enterocytic differentiation of cultured human colon cancer cells by replacement of glucose by galactose in the medium. Biol. Cell. 44:193–196; 1982.

    CAS  Google Scholar 

  30. Podolsky, D. K.; Fournier, D. A.; Lynch, K. E. Human colonic goblet cells. Demonstration of distinct subpopulations defined by mucinspecific monoclonal antibodies. J. Clin. Invest. 77:1263–1271; 1986.

    PubMed  CAS  Google Scholar 

  31. Polak-Charcon, S.; Hekmati, M.; Ben-Shaul, Y. The effect of modifying the culture medium on cell polarity in a human colon carcinoma cell line. Cell Diff. Dev. (Ireland) 26:119–129; 1989.

    Article  CAS  Google Scholar 

  32. Pyke, K. W.; Gogerly, R. L. Murine fetal colon in vitro; assays for growth factors. Differentiation 29:56–92; 1985.

    Article  PubMed  CAS  Google Scholar 

  33. Reid, L. M.; Jefferson, D. M. Culturing hepatocytes and other differentiated cells. Hepatology 4:548–559; 1987.

    Article  Google Scholar 

  34. Richman, P. I.; Bodmer, W. F. Control of differentiation in human colorectal carcinoma cell lines: epithelial-mesenchymal interactions. J. Pathol. 156:197–211; 1988.

    Article  PubMed  CAS  Google Scholar 

  35. Schwarz, R. P.; Goodwin, T. J.; Wolf, D. A. Cell culture for three-dimensional modeling in rotating-wall vessels: applications of simulated microgravity. J. Tissue Cult. Methods 13:4; 1991.

    Google Scholar 

  36. Shamsuddin, A. In: Moyer, M. P.; Poste, G. H., eds. Colon cancer cells. New York: Academic Press; 1990:137–153.

    Google Scholar 

  37. Sheehan, D. C.; Hrapchak, B. B., editors. Theory and practice of histotechnology, 2nd ed. St. Louis, MO: C. V. Mosby Co.; 1980.

    Google Scholar 

  38. Simon-Assmann, P.; Bouziges, F.; Daviaud, D., et al. Synthesis of glycosaminoglycans by undifferentiated and differentiated HT29 human colonic cancer cells. Cancer Res. 47:4478–4484; 1987.

    PubMed  CAS  Google Scholar 

  39. Simon-Assmann, P.; Bouziges, F.; Vigny, M., et al. Origin and deposition of basement membrane heparan sulfate proteoglycan in the developing intestine. J. Cell Biol. 109:1837–1846; 1989.

    Article  PubMed  CAS  Google Scholar 

  40. Simon-Assmann, P.; Kédinger, M.; Haffen, K. Organ culture of fetal rat intestine. Enzyme 31:65–72; 1984.

    PubMed  CAS  Google Scholar 

  41. Simon-Assmann, P.; Kédinger, M.; Haffen, K. Immunocytochemical localization of extracellular-matrix proteins in relation to rat intestinal morphogenesis. Differentiation 32:59–66; 1986.

    Article  PubMed  CAS  Google Scholar 

  42. Sutherland, R. M. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240:177–184; 1988.

    Article  PubMed  CAS  Google Scholar 

  43. Viallard, V.; Denis, C.; Trocheris, V., et al. Effect of glutamine deprivation and glutamate or ammonium chloride addition on growth rate, metabolism and differentiation of human colon cancer cell-line HT29. Int. J. Biochem. 18:263–269; 1986.

    Article  PubMed  CAS  Google Scholar 

  44. Wiens, D.; Park, C. S.; Stockdale, F. E. Milk protein expression and ductal morphogenesis in the mammary gland in vitro: hormone-dependent and -independent phases of adipocyte-mammary epithelial cell interaction. Dev. Biol. 120:245–258; 1987.

    Article  PubMed  CAS  Google Scholar 

  45. Wolf, D. A.; Schwarz, R. P.; Sams, C. F. Bioreactor incubator tissue culture system. Johnson Space Center Research and Technology Report. Annual Report 33–34; 1989.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodwin, T.J., Milburn Jessup, J. & Wolf, D.A. Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels. In Vitro Cell Dev Biol - Animal 28, 47–60 (1992). https://doi.org/10.1007/BF02631079

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631079

Key words

Navigation