Skip to main content
Log in

Conclusions

In conclusion, it must be stressed that scientific studies need to be undertaken in the near future to solve the various problems mentioned above. These studies should also take account of all the non-occupational factors that, may alter the toxicokinetics and the toxicodynamics of solvents. At present, however, existing data obtained both from experimental research in animals and in volunteers and from studies carried out in workers liable to occupational exposure can be used in preparing lists similar to those we have proposed in Table 1, in which metabolic interferences are reported for the various substances. Although incomplete and only indicative, these lists may be a useful guide to the correct preventive measures to be implemented in various workplace situations. They should, at the very least, stimulate readers to extend their knowledge of the toxicology of combined exposure to solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ACGIH (1994) Threshold limit values for chemical substances and physical agents and biological exposure indices for 1994–1995. Cincinnati

  2. Alessio L, Apostoli P, Crippa M (1994) Multiple exposure to solvents and metals. Occup Hyg 1:127–151

    CAS  Google Scholar 

  3. Alessio L, Apostoli P, Crippa M (1995) Influence of individual factors and personal habits on the levels of biological indicators of exposure. Toxicol Lett 77:93–103

    Article  PubMed  CAS  Google Scholar 

  4. Ballantyne B (1985) Evaluation of hazards from mixtures of chemicals in the occupational environment. J Occup Med 27: 85–94

    PubMed  CAS  Google Scholar 

  5. van Dormolen M, Hertog CAWM, van Dijk FJH, Kompier MAJJ, Fortuin R (1990) The quest for interaction: studies on combined exposure. Int Arch Occup Environ Health 62:279–287

    Article  PubMed  Google Scholar 

  6. DFG Deutsche Forschungsgemeinschaft: MAK and BAT values 1995, VCH Distribution, Weinheim (Germany)

    Google Scholar 

  7. Engstrom K, Riihimaki V, Laine A (1984) Urinary disposition of ethylbenzene and m-Xylene in man following separate and combined exposure. Int Arch Occup Envir Health 54:355–363

    Article  CAS  Google Scholar 

  8. Ferioli A, Buizza P, Apostoli P, Soave C, Alessio L (1990) Interazioni metaboliche tra acetone e stirene in lavoratori del comparto vetro-resine. Esposizione a stirene, Capodaglio E, Manzo L (eds). La Goliardica, Pavia, pp 113–124

    Google Scholar 

  9. Ikeda M (1995) Exposure to complex mixtures: implication for biological monitoring. Toxicol Lett 77:9–14

    Article  Google Scholar 

  10. Inoue O, Seiji K, Watanabe T, Kasahara M, Nakatsuka H, Yin S, Li G, Cai S, Jin C, Ikeda M (1988) Mutual metabolic suppression between benzene and toluene in man. Int Arch Occup Environ Health 60:15–20

    Article  PubMed  CAS  Google Scholar 

  11. Inoue O, Seiji K, Nakatsuka h, Watanabe T, Yin S, Li G, Cai S, Jin C, Ikeda M (1989) Urmary t, t-muconic acid as an indicator of exposure to benzene. Brit Ind Med 46:122–127

    CAS  Google Scholar 

  12. Jacubowski M, Kostrzewski P (1986) Excretion of methylbenzoic acid in urine as a result of single and combined exposure to m-xylene. Pol J Occup Med 2:238–247

    Google Scholar 

  13. Kawai T, Yasugi T, Mizunuma K, Horiguchi S, Morioka I, Miyashita K, Uchida Y, Ikeda M (1992) Monitoring of workers exposed to a mixture of toluene, styrene and methanol vapours by means of diffusive air sampling, blood analysis and urine analysis. Int Arch Occup Environ Health 63:428–435

    Google Scholar 

  14. Korn M, Gfrorer W, Herz R, Wodarz I, Wodarz R (1992) Stereometobolism of ethylbenzene in man: gas chromatographic determination of urinary excreted mandelic acid enantiomers and phenylglyoxlic acid and their relation to the height of occupational exposure. Int Arch Occup Environ Health 64: 75–78

    Article  PubMed  CAS  Google Scholar 

  15. Liira J, Riihimaki V, Engstrom K, Plaffli P (1988) Coexposure of man to m-xylene and methylethyl ketone. Scand Work Environ Health 14:322–327

    CAS  Google Scholar 

  16. Ogata M, Fiserova-Bergerova V, Droz PO (1993) Biological monitoring VII. Occupational exposures to mixtures of industrial chemicals. Appl Occup Environ Hygiene 8:609–617

    CAS  Google Scholar 

  17. Ogata M, Tomokuni K, Takatsuka (1970) Urinary excretion of hippuric acid and m-or p-methylhyppuric acid in the urine of persons exposed to vapours of toluene and m-or p-xylene as a test of exposure. Brit J Ind Med 27:43–50

    CAS  Google Scholar 

  18. Perbellini L, Bartolucci GB, Brugnone F, De Rosa E, Valentini F (1985) II 2,5 esandione nel controllo biologico dell'esposizione professionale a n-esano. Med Lavoro 76:35–43

    PubMed  CAS  Google Scholar 

  19. Sato A (1991) The effect of environmental factors on the pharmacokinetic behaviour of organic solvent vapours. Ann Occup Hygiene 35:525–541

    Article  CAS  Google Scholar 

  20. Sato A, Nakajima T (1979) Dose-dependent metabolic interaction between benzene and toluene in vivo and in vitro. Toxicol Appl Pharmacol 48:249–256

    Article  PubMed  CAS  Google Scholar 

  21. Savolainen K, Riihimaki V, Laina A, Kekoni J (1981) Short term exposure of human subjects to m-xylene and 1,1,1-trychloroethane. Int Arch Occup Environ Health 49:89–98

    Article  PubMed  CAS  Google Scholar 

  22. Seiji K, Inoue O, Jin C, Liu Yt, Cai SX, Ohashi M, Watanabe T, Nakatsuka H, Kawai T, Ikeda M (1989) Dose-excretion relationship in tetrachloroethylene exposed workers and the effect of tetrachloroethylene co-exposure on trichloroethylene metabolism. Am J Ind 16:675–684

    CAS  Google Scholar 

  23. Stewart RD, Hake CL (1976) Paint remover hazard. J Am Med Assoc 235:398–401

    Article  CAS  Google Scholar 

  24. Takeuchi Y, Hisanaga N, Ono Y, Shibata E, Saito I, Iwata M Modification of metabolism and neurotoxicity of n-hexane by co-exposure of toluene. Int Arch Occup Environ Health 65: S227–230

  25. Tardif R (1991) Effect of simultaneous exposure to toluene and xylene on their respective biological exposure indices in humans. Int Arch Occup Environ Health 63:279–284

    Article  PubMed  CAS  Google Scholar 

  26. Tardif R, Goyal R, Brodeur J (1992) Assessment of occupational health risk from multiple exposure: review of industrial solvent interaction for biological monitoring of exposure. Toxicol Ind Health 8:37–52

    PubMed  CAS  Google Scholar 

  27. Tolos W, Setzer J, Mackenzie B, Lowry L, Dick R (1987) Biological monitoring of experimental human inhalation exposures of methyl ethyl ketone and toluene. Biological monitoring of exposure to chemicals organic compounds. In: Ho MH, Dillon HK (eds) Wiley and Sons, New York, pp 133–142

    Google Scholar 

  28. Wallen M, Holm S, Byfalt Nordqvist B (1985) Coexposure to toluene and p-xylene in man: uptake and elimination. Brit J Ind Med 42:111–116

    CAS  Google Scholar 

  29. Wigaeus E, Lof A, Byfalt Nordqvist M (1984) Uptake, distribution, metabolism and elimination of styrene in man. A comparison between single exposure and co-exposure with acetone. Brit J Ind Med 41:539–546

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alessio, L. Multiple exposure to solvents in the workplace. Int. Arch Occup Environ Heath 69, 1–4 (1996). https://doi.org/10.1007/BF02630731

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02630731

Key words

Navigation