Skip to main content
Log in

Testing two versions of lattice gauge theory: Creutz ratios inU(1)3

  • Articles
  • Part 6. High-Energy Physics
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In our simplicial version of lattice gauge theory, we approximate Euclidean path integrals by tiling space-time with simplexes and by linearly interpolating the fields throughout each simplex from their values at the vertices. We compare this method with Wilson's lattice gauge theory forU(1) in three dimensions. As a standard of comparison, we compute the exact values of Creutz ratios of Wilson loops in the continuum theory. Monte Carlo computations using the simplicial method give Creutz ratios within a few percent of the exact values for reasonably sized loop atβ=1, 2, and 10. Similar computations using Wilson's method give ratios that typically differ from the exact values by factors of 2 or more for 1⩽β⩽3.5 and that have the wrongβ dependence. The better accuracy of the simplicial method is due to its use of the action and domain of integration of the exact theory, unaltered apart from the granularity of the simplicial lattice. We also present data on the action density and the mass gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Wilson,Phys. Rev. D 10:2445 (1974).

    Article  ADS  Google Scholar 

  2. M. Creutz,Phys. Rev. Lett. 45:313 (1980).

    Article  ADS  Google Scholar 

  3. M. Creutz,Quarks, Gluons, and Lattices (Cambridge Univ. Press, Massachusets, 1983).

    Google Scholar 

  4. R. K. Ellis, inGauge Theory on a Lattice: 1985 (Dept. of Commerce, Springfield, Virginia, 1984), p. 191.

    Google Scholar 

  5. K. Cahill, S. Prasad, and R. Reeder,Phys. Lett. B 149:377 (1984).

    Article  ADS  Google Scholar 

  6. C. M. Bender, G. S. Guralnik, and D. S. Sharp,Nucl. Phys. B 207:54 Q1982).

    Article  ADS  Google Scholar 

  7. M. Creutz, L. Jacobs, and C. Rebbi,Phys. Rev. D 20, 1915, 1979.

    Article  ADS  Google Scholar 

  8. G. Bhanot and M. Creutz,Phys. Rev. D 21, 2892 (1980).

    Article  ADS  Google Scholar 

  9. J. Ambjørn, A. J. G. Hey, and S. Otto,Nucl. Phys. B 210:347 (1982).

    Article  ADS  Google Scholar 

  10. V. F. Müller and W. Rühl,Z. Phys. C 9:261 (1981); proceedings of the 17th Winter School of Theoretical Physics (Karpacz, 1980).

    Article  Google Scholar 

  11. G. Forsythe, M. Malcolm, and C. Moler,Computer Methods for Mathematical Computations (Prentice-Hall, New Jersey, 1977), p. 246.

    MATH  Google Scholar 

  12. D. E. Knuth,The Art of Computer Programming, vol. 2, 2nd ed. (Addison-Wesley, Massachusetts, 1981), p. 117.

    MATH  Google Scholar 

  13. C. Moler, “MATLAB User's Guide,” (CS81-1), Dept. of Computer Science, Univ. of New Mexico (1982). We have ported this software to the Ridge 32C.

  14. K. Cahill and D. Stump,Phys. Rev. D 20:2096 (1979).

    Article  ADS  Google Scholar 

  15. R. Horsley and U. Wolff,Phys. Lett. B 105:290 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by the U.S. epartment of Energy under grant DE-FG04-84ER40166.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cahill, K., Reeder, R. Testing two versions of lattice gauge theory: Creutz ratios inU(1)3 . J Stat Phys 43, 1043–1059 (1986). https://doi.org/10.1007/BF02628329

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02628329

Key words

Navigation