Skip to main content
Log in

Quantum simulations of aqueous systems

  • Articles
  • Part 4. Chemistry
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Discretized path-integral simulation methods have been applied to the determination of structure in two quantum mechanical aqueous systems. The first of these applications is the determination of the consequences of quantizing the rigid-body degrees of freedom of the water molecules in the many-particle pure room temperature liquid. The results provide a quantitative estimate of the significance of approximating such a system as classical and also of the size of isotope effects on the liquid structure. These features are found to have a close analogue in the structural response of the fluid to temperature. Second, we consider the structure of a hydrated excess electron. Here we treat the water classically but treat the highly quantum mechanical electron via a path-integral description, introducing a local electron-water pseudopotential for the interaction. The excess electron density and solvent distribution are examined and shown to exhibit strong structural similarities to ionic solvation. However, it is found that the electronic density fluctuates sufficiently in size and shape as to nearly erase distinct features in the electron-solvent radial correlations. For both of the aqueous systems considered, comparison of results following from the simulations with experimentally accessible direct structural measures yields satisfactory agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Nemethy and H. A. Scheraga,J. Chem. Phys. 41:680 (1964).

    Article  ADS  Google Scholar 

  2. D. Eisenberg and W. Kauzmann,The Structure and Properties of Water (Oxford Press, London, 1969).

    Google Scholar 

  3. A. Rahman and F. H. Stillinger,J. Chem. Phys. 55:3336 (1971).

    Article  ADS  Google Scholar 

  4. R. A. Kuharski and P. J. Rossky,J. Chem. Phys. 82:5164 (1985).

    Article  ADS  Google Scholar 

  5. F. H. Stillinger,Adv. Chem. Phys. 31:1 (1975).

    Article  Google Scholar 

  6. R. A. Kuharski and P. J. Rossky,J. Chem. Phys. 82:5289 (1985).

    Article  ADS  Google Scholar 

  7. N. R. Kestner inElectron-Solvent and Anion-Solvent Interactions, L. Kevan and B. C. Webster, eds. (Elsevier, New York, 1976); D. F. Feng and L. Kevan,Chem. Rev. 80:1 (1980); E. J. Hart and M. Anbar,The Hydrated Electron (Wiley, New York, 1970).

    Google Scholar 

  8. L. Kevan,J. Phys. Chem. 85:1628 (1981).

    Article  Google Scholar 

  9. M. Mezei and D. L. Beveridge,J. Chem. Phys. 74:6902 (1981); J. Chandresekhar, D. C. Spellmeyer, and W. L. Jorgensen,J. Am. Chem. Soc. 106:903 (1984).

    Article  ADS  Google Scholar 

  10. R. W. Impey, P. A. Madden, and I. R. McDonald,J. Phys. Chem. 87:5071 (1983).

    Article  Google Scholar 

  11. R. Feynman,Statistical Mechanics (Benjamin, Reading, Massachusetts, 1972).

    Google Scholar 

  12. D. Chandler, and P. G. Wolynes,J. Chem. Phys. 74:4078 (1981).

    Article  ADS  Google Scholar 

  13. D. Thirumalai, R. W. Hall, and B. J. Berne,J. Chem. Phys. 81:2523 (1984).

    Article  ADS  Google Scholar 

  14. M. Parrinello and A. Rahman,J. Chem. Phys. 80:860 (1984).

    Article  ADS  Google Scholar 

  15. B. DeRaedt, M. Sprik, and M. L. Klein,J. Chem. Phys. 80:5719 (1984).

    Article  ADS  Google Scholar 

  16. F. H. Stillinger and A. Rahman,J. Chem. Phys. 60:1545 (1974).

    Article  ADS  Google Scholar 

  17. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein,J. Chem. Phys. 79:926 (1983).

    Article  ADS  Google Scholar 

  18. H. J. C. Berendsen, J. P. M. Postma, W. F. VanGunsteren, and J. Hermans, inInter-molecular Forces, B. Pullman, ed. (Reidel, Dordrecht, Holland, 1981).

    Google Scholar 

  19. D. G. Truhlar, K. Onda, R. A. Eades, and D. A. Dixon,Int. J. Quant. Chem. Symp. 13:601 (1979).

    Google Scholar 

  20. J. Jortner, N. R. Kestner, S. A. Rice, and M. H. Cohen,J. Chem. Phys. 43:2614 (1965).

    Article  ADS  Google Scholar 

  21. V. Heine,Solid State Phys. 24:1 (1970).

    Article  Google Scholar 

  22. J. Schnitker and P. J. Rossky (manuscript in preparation).

  23. S. Hara,J. Phys. Soc. Japan 22:710 (1967).

    Article  ADS  Google Scholar 

  24. W. F. VanGunsteren, H. J. C. Berendsen, F. Colonna, D. Perahia, J. P. Hollenberg, and D. Lellouch,J. Comp. Chem. 5:272 (1984).

    Article  Google Scholar 

  25. M. Mezei and D. L. Beveridge,J. Chem. Phys. 74:62 (1981).

    Google Scholar 

  26. A. H. Narten, M. D. Danford, and H. A. Levy,Discuss. Faraday Soc. 43:97 (1967).

    Article  Google Scholar 

  27. K. Nishikaua and N. Kitagawa,Bull. Chem. Soc. Japan 53:2804 (1980).

    Article  Google Scholar 

  28. L. Bosio, S. Chen, and J. Teixeira,Phys. Rev. A. 27:1468 (1983).

    Article  ADS  Google Scholar 

  29. P. A. Egelstaff and J. H. Root,Chem. Phys. 76:405 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossky, P.J., Schnitker, J. & Kuharski, R.A. Quantum simulations of aqueous systems. J Stat Phys 43, 949–965 (1986). https://doi.org/10.1007/BF02628322

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02628322

Key words

Navigation