Skip to main content
Log in

Calcium, magnesium, and serum factors in multiplication of normal and transformed human lung fibroblasts

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

Serum factors determine the extracellular requirement for both Ca2+ and Mg2+ for multiplication of normal human lung fibroblasts in vitro. Serum factors also affect the extracellular Ca2+ requirement for transformed fibroblasts but to a different extent than for normal cells. Transformed cells exhibit a reduced requirement for both Ca2+ and Mg2+ for multiplication. The apparent reduction in Ca2+ requirement of transformed cells is dependent on the level of serum factors in the medium. The reduced Mg2+ requirement for transformed cells is more striking than the loss of Ca2+ and independent of the level of serum factors in the medium. A sequential effector relationship among serum factors, Ca2+ and Mg2+, in a proliferative control system for normal cells is proposed. Alteration or bypass of an intracellular Mg2+-requiring process is proposed as a major lesion in the transformed cells. This alteration causes an observed loss of requirements for both Ca2+ and serum factors for the multiplication of transformed cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brooks, R. G. Growth regulationin vitro and the role of serum. Allison, A. C. ed. Structure and function of plasma proteins; vol. 2. New York: Plenum Press; 1976: 239–289.

    Google Scholar 

  2. Gospodarowicz, D.; Moran, J. S. Growth factors in mammalian cell culture. Annu. Rev. Biochem. 45: 531–558; 1976.

    Article  PubMed  CAS  Google Scholar 

  3. McKeehan, W. L.; Genereaux, D. P.; Ham, R. G. Assay and partial purification of factors from serum that control multiplication of human diploid fibroblasts. Biochem. Biophys. Res. Commun. 80: 1013–1021; 1978.

    Article  PubMed  CAS  Google Scholar 

  4. Rasmussen, H.; Goodman, D. B. P.; Tenenhouse, A. The role of cyclic AMP and calcium in cell activation. CRC Crit. Rev. Biochem. 1: 95–148; 1972.

    PubMed  CAS  Google Scholar 

  5. Rebhun, L. I. Cyclic nucleotides, calcium, and cell division. Int. Rev. Cytol. 49: 1–54; 1977.

    Article  PubMed  CAS  Google Scholar 

  6. Rubin, H. Central role for magnesium in coordinate control of metabolism and growth in animal cells. Proc. Natl. Acad. Sci. U.S.A. 72: 3551–3555; 1975.

    Article  PubMed  CAS  Google Scholar 

  7. Tupper, J. T.; Del Rosso, M.; Hazelton, B.; Zorgniotti, F. Serum-stimulated changes in calcium transport and distribution in mouse 3T3 cells and their modification by dibutyryl cyclic AMP. J. Cell. Physiol. 95: 71–84; 1978.

    Article  PubMed  CAS  Google Scholar 

  8. Balk, S. D. Calcium as a regulator of the proliferation of normal, but not of transformed, chicken fibroblasts in a plasma-containing medium. Proc. Natl. Acad. Sci. U.S.A. 73: 1651–1654; 1971.

    Google Scholar 

  9. Balk, S. D.; Whitfield, J. F.; Youdale, T.; Braun, A. Roles of calcium, serum, plasma, and folic acid in the control of proliferation of normal and Rous sarcoma virus-infected chicken fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 70: 675–679; 1973.

    Article  PubMed  CAS  Google Scholar 

  10. Boynton, A. L.; Whitfield, J. F. Different calcium requirements for proliferation of conditionally and unconditionally tumorigenic mouse cells. Proc. Natl. Acad. Sci. U.S.A. 73: 1651–1654; 1976.

    Article  PubMed  CAS  Google Scholar 

  11. Boynton, A. L.; Whitfield, J. F.; Isaacs, R. J.; Tremblay, R. The control of human WI-38 cell proliferation by extracellular calcium and its elimination by SV-40 virus-induced proliferative transformation. J. Cell. Physiol. 92: 241–248; 1977.

    Article  PubMed  CAS  Google Scholar 

  12. Boynton, A. L.; Whitfield, J. F. Calcium requirements for the proliferation of cells infected with a temperature-sensitive mutant of Rous sarcoma virus. Cancer Res. 38: 1237–1240; 1978.

    PubMed  CAS  Google Scholar 

  13. Boynton, A. L.; Whitfield, J. E. Calcium, cyclic AMP and the control of cell proliferation (abstr.). J. Supramol. Struct. 52: 321; 1978.

    Google Scholar 

  14. Boynton, A. L.; Whitfield, J. F.; Isaacs, R. J.; Tremblay, R. G. An examination of the roles of cyclic nucleotides in the initiation of cell proliferation. Life Sci. 22: 703–710; 1978.

    Article  PubMed  CAS  Google Scholar 

  15. Rubin, H.; Koide, T. Mutual potentiation by magnesium and calcium of growth in animal cells. Proc. Natl. Acad. Sci. U.S.A. 73: 168–172; 1976.

    Article  PubMed  CAS  Google Scholar 

  16. Sanui, H.; Rubin, H. Correlated effects of external magnesium on cation content and DNA synthesis in cultured chicken embryo fibroblasts. J. Cell Physiol. 92: 23–32; 1977.

    Article  PubMed  CAS  Google Scholar 

  17. Rubin, H. Magnesium deprivation reproduces the coordinate effects of serum removal or cortisol addition on transport and metabolism in chick embryo fibroblasts. J. Cell. Physiol. 89: 613–626; 1977.

    Article  Google Scholar 

  18. Rubin, A. H.; Chu, B. Reversible regulation by magnesium of chick embryo fibroblast proliferation. J. Cell. Physiol. 94: 13–20; 1978.

    Article  PubMed  CAS  Google Scholar 

  19. McKeehan, W. L.; Ham, R. G. Calcium and magnesium ions and the regulation of multiplication in normal and transformed cells. Nature 275: 756–758; 1978.

    Article  PubMed  CAS  Google Scholar 

  20. McKeehan, W. L.; Hamilton, W. G.; R. G. Ham. Selenium is an essential trace nutrient for growth of WI-38 diploid human fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 73: 2023–2027; 1976.

    Article  PubMed  CAS  Google Scholar 

  21. McKeehan, W. L.; Ham, R. G. Stimulation of clonal growth of normal fibroblasts with substrata coated with basic polymers. J. Cell. Biol. 71: 727–734; 1976.

    Article  PubMed  CAS  Google Scholar 

  22. McKeehan, W. L. The effect of temperature during trypsin treatment on viability and multiplication potential of single normal human and chicken fibroblasts. Cell. Biol. Int. Rep. 1: 335–343; 1977.

    Article  PubMed  CAS  Google Scholar 

  23. McKeehan, W. L.; McKeehan, K. A.; Hammond, S. L.; Ham, R. G. Improved medium for clonal growth of human diploid fibroblasts at low concentrations of serum protein. In Vitro 13: 399–416; 1977.

    Article  PubMed  CAS  Google Scholar 

  24. Ham, R. G.; McKeehan, W. L. Development of improved media and culture conditions for clonal growth of normal diploid cells. In Vitro 14: 11–22; 1978.

    Article  PubMed  CAS  Google Scholar 

  25. Ham, R. G.; McKeehan, W. L. Nutritional requirements for clonal growth of nontransformed cells. Katsuta, H. ed. Nutritional requirements of cultured cells. Baltimore: University Park Press; 63–116; 1978.

    Google Scholar 

  26. Balis, M. E. Determination of glutamic and aspartic acids and their amides. Methods Biochem. Anal. 20: 103–133; 1971.

    Article  PubMed  CAS  Google Scholar 

  27. Yuki, H.; Sempubett, C.; Park, M.; Takiura, K. Fluorometric determination of adenine and its derivatives by reaction with glyoxalhydrate trimer. Anal. Biochem. 46: 123–128; 1972.

    Article  PubMed  CAS  Google Scholar 

  28. Shea, P. A.; Aprison, M. H. An enzymatic method for measuring picomole quantities of acetylcholine and choline in CNS tissue. Anal. Biochem. 56: 165–177; 1973.

    Article  PubMed  CAS  Google Scholar 

  29. McKeehan, W. L.; McKeehan, K. A. Oxocarboxylic acids, pyridine nucleotide-linked oxidoreductases and serum factors in regulation of cell proliferation. J. Cell Physiol. 101: 9–16; 1979.

    Article  PubMed  CAS  Google Scholar 

  30. Kissane, J. M.; Robbins, E. The fluorometric measurement of deoxyribonucleic acid in animal tissues with special reference to the central nervous system. J. Biol. Chem. 233: 184–188; 1958.

    PubMed  CAS  Google Scholar 

  31. Brunette, M. G.; Vigneult, N.; Danan, G. New fluorometric method for determination of picomoles of inorganic phosphorus—application to renal tubular fluid. Anal. Biochem. 86: 229–237; 1978.

    Article  PubMed  CAS  Google Scholar 

  32. Bradford, M. M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248–254; 1976.

    Article  PubMed  CAS  Google Scholar 

  33. Girardi, A. J.; Weinstein, D.; Moorhead, P. S. SV40 transformation of human diploid cells. A parallel study of viral and karyologic parameters. Ann. Med. Exp. Fenn. 44: 242–254; 1966.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by Grant CA-15305 from the National Cancer Institute, Contract 223-74-1156 from the Bureau of Biologics, Food and Drug Administration, HEW Biomedical Research Support Grant S07RR05800, and the W. Alton Jones Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKeehan, W.L., McKeehan, K.A. Calcium, magnesium, and serum factors in multiplication of normal and transformed human lung fibroblasts. In Vitro 16, 475–485 (1980). https://doi.org/10.1007/BF02626460

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02626460

Key words

Navigation