Skip to main content
Log in

A 63 KDa toxic polypeptide fromBacillus thuringiensis subsp.kurstaki (HD-263): Effects on several lepidopteran cell lines

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

An electrophoretically homogeneous 63 KDa polypeptide derived from the protoxin ofBacillus thuringiensis subsp.kurstaki; (HD-263) caused lysis of cells from the lepidopteran cell lines TN368, IPLB-HZ1075, LD652Y, and SF21AE. The extent of cytolysis among the different cell cultures varied according to the incubation milieu, the polypeptide, and the particular cell culture studied.

Preincubation of the polypeptide with either the amino sugars galactosamine, mannosamine, glucosamine, or theirN-acetyl derivatives prevented cytolysis to a varying extent. Derivatives of galactose were more effective than those of mannose, followed by those of glucose. The amino sugars inhibited more efficiently than theN-acetyl derivatives. No inhibition was detected using the parent sugars.

A baculovirus originally isolated from the lepidopteranAutographa californica was grown in TN368 cells and the extracellular virus (ECV) preincubated with varying concentrations of the polypeptide before assay. A concentration of 5 μg/ml reduced viral infectivity 99% when assayed on TN368 cells.

These results support the current thinking that at least some Bt toxins may utilize specific cell-surface glycoconjugates for initiation of their toxic action and that the numbers and types of receptors may vary with the specific cell line. Also, reduction of baculovirus ECV infectivity by Bt toxic polypeptide indicates binding to a cell-surface glycoconjugate essential for initiation of infection, whether it is the normal cell receptor or a virus-coded glycoconjugate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gonzales, J. M.; Brown, B. J.; Carlton, B. C. Transfer ofBacillus thuringiensis plasmids coding for the delta endotoxin among strains ofB. thuringiensis andB. cereus. Proc. Natl. Acad. Sci. USA 79:6951–6955; 1982.

    Article  Google Scholar 

  2. Schnepf, H. E.; Whiteley, H. R. Cloning and expression of theBacillus thuringiensis crystal protein gene inEscherichia coli. Proc. Natl. Acad. Sci. USA 78:2893–2897; 1981.

    Article  PubMed  CAS  Google Scholar 

  3. Schnepf, H. E.; Wong, H. C. Whiteley, H. R. The amino acid sequence of a crystal protein fromBacillus thuringiensis deduced from DNA base sequence. J. Biol. Chem. 260:6264–6272; 1985.

    PubMed  CAS  Google Scholar 

  4. Schnepf, H. E.; Whiteley, H. R. Delineation of a toxin-encoding segment of aBacillus thuringiensis crystal protein gene. J. Biol. Chem. 260:6273–6280; 1985.

    PubMed  CAS  Google Scholar 

  5. Murphy, D. W.; Sohi, S. S.; Fast, P. G.Bacillus thuringiensis enzyme-digested Delta endotoxin: Effect on cultured insect cells. Science 194:954–956; 1976.

    Article  PubMed  CAS  Google Scholar 

  6. Nishiitsutsuji-Uwo, J.; Endo, Y.; Himeno, M. Mode of action ofBacillus thuringiensis d-endotoxin: Effect of TN-368 cells. J. Invert. Pathol. 34:267–275; 1979.

    Article  CAS  Google Scholar 

  7. Nishiitsutsuji-Uwo J.; Endo Y.; Himeno, M. Effects ofBacillus thuringiensis delta-endotoxin on insect and mammalian cellsin vitro. Appl. Entomol. Zool. 15:133–139; 1980.

    CAS  Google Scholar 

  8. Johnson, D. E. Selection for resistance to δ-endotoxin in an insect cell line (Choristoneura fumiferana). Experientia 40:274–275; 1984.

    Article  CAS  Google Scholar 

  9. Johnson D. E. Toxicity ofBacillus thuringiensis entomocidal protein toward cultured insect tissue. J. Invert. Pathol. 38:94–101; 1981.

    Article  CAS  Google Scholar 

  10. Johnson, D. E.; Davidson, L. I. Specificity of cultured insect tissue cells for bioassay of entomocidal protein fromBacillus thuringiensis. In Vitro 20:66–70; 1984.

    PubMed  CAS  Google Scholar 

  11. Himeno, M.; Koyama, N.; Funato, T., et al. Mechanism of action ofBacillus thuringiensis insecticidal delta-endotoxins on insect cellsin vitro. Agric. Biol. Chem. 49:1461–1468; 1985.

    CAS  Google Scholar 

  12. Knowles, B. H.; Thomas, W. E.; Ellar, D. J. Lectin-like binding ofBacillus thuringiensis var.kurstaki lepidopteran-specific toxin is an initial step in insecticidal action. FEBS Lett. 168:197–202; 1984.

    Article  CAS  Google Scholar 

  13. Knowles, B. H.; Ellar, D. J. Characterization and partial purification of a plasma membrane receptor forBacillus thuringiensis varkurstaki lepidopteran-specific δ-endotoxin. J. Cell Sci. 83:89–101; 1986.

    PubMed  CAS  Google Scholar 

  14. Knowles, B. H.; Francis, P. H.; Ellar, D. J. Structurally relatedBacillus thuringiensis δ-endotoxins display major differences in insecticidal activityin vivo andin vitro. J. Cell Sci. 84:221–236; 1986.

    PubMed  CAS  Google Scholar 

  15. Aronson, J. N.; Arvidson, H. C. Toxic trypsin digest fragment from theBacillus thuringiensis parasporal protein. Appl. Environ. Microbiol. 53:416–421; 1987.

    PubMed  CAS  Google Scholar 

  16. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254; 1976.

    Article  PubMed  CAS  Google Scholar 

  17. Hink, W. F. Established insect cell line from the cabbage looper,Trichoplusia ni. Nature 226:466–467; 1970.

    Article  PubMed  CAS  Google Scholar 

  18. Goodwin, R. H. Insect cell culture: Improved media and methods for initiating attached cell lines from the lepidoptera. In Vitro 11:369–378; 1975.

    Article  PubMed  CAS  Google Scholar 

  19. Brown, M.; Faulkner, P. Factors affecting the yield of virus in a cloned cell line ofTrichoplusia ni infected with a nuclear polyhedrosis virus. J. Invert. Pathol. 26:251–257; 1975.

    Article  Google Scholar 

  20. Reed, L. J.; Muench, H. A simple method of estimating fifty percent end points. Am. J. Hyg. 27:497; 1938.

    Google Scholar 

  21. English, L. H.; Cantley, L. C. Delta endotoxin is a potent inhibitor of the (Na,K)-ATPase. J. Biol. Chem. 261:1170–1173; 1986.

    PubMed  CAS  Google Scholar 

  22. Fast, P. G. The crystal toxin ofBacillus thuringiensis. In: Burges, H. D., ed. Microbial control of pests and plant diseases 1970:1980. London: Academic Press; 1981:223–248.

    Google Scholar 

  23. Adams, J. R.; Goodwin, R. H.; Wilcox, T. A. Electron microscopic investigations on invasion and replication of insect baculovirusesin vivo andin vitro. Biologie Cellulaire 28:261–268; 1977.

    Google Scholar 

  24. Thomas, W. E.; Ellar, D. J.Bacillus thuringiensis varisraelensis crystal δ-endotoxin: Effects on insect and mammalian cellsin vitro andin vivo. J. Cell Sci. 60:181–187; 1983b.

    PubMed  CAS  Google Scholar 

  25. Dixon, M.; Webb, E. C. Enzyme kinetics. In:Enzymes. New York: Academic Press; 1958:62–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Authorized for publication by as Journal Series Paper No. 7670.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarthy, W.J., Aronson, J.N. & Labenberg, J. A 63 KDa toxic polypeptide fromBacillus thuringiensis subsp.kurstaki (HD-263): Effects on several lepidopteran cell lines. In Vitro Cell Dev Biol 24, 59–64 (1988). https://doi.org/10.1007/BF02623816

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623816

Key words

Navigation