Skip to main content
Log in

Three-dimensional organization of the extracellular matrix secreted by cultured rat smooth muscle cells

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Specific interactions between cells and the extracellular matrix (ECM) in which they are embedded play a vital role in tissue organization. In recent years, many of the individual components of the extracellular matrix have been isolated and their molecular structures elucidated, but the detailed topography of most extracellular matrices, as they are deposited by cells, is still largely unknown. In this study, the insoluble extracellular matrix produced by cultured rat vascular smooth muscle cells has been characterized morphologically using high-resolution electron microscopy of rotary platinum replicas. These cells grew as flat sheets in culture, secreting their matrix laterally and basally. The matrix was composed of a cross-linked fibrillar meshwork. Some fine fibers (10 to 15 nm in diameter) were naked, but most of the filamentous mesh was covered with coarse granular material. Limited digestion with trypsin or pancreatic elastase removed most of this coating, indicating that the granules were glycoproteins and proteoglycans. Another subset of matrix fibrils (20 to 40 nm in diameter) was identified as type I collagen by direct comparison with purified bovine skin collagen. In addition to exposing the underlying filamentous substructure of the matrix, protease treatment also revealed large, straight fiber bundles and globules of amorphous material suspended in the filamentous web. This novel view of a complex matrix promises to provide spatial information that will be useful in future studies of cell interactions with the ECM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamson, E. D. The effect of collagen on cell division, cellular differentiation, and embryonic development. In: Weiss, J. B.; Jayson, M. I. V., eds. Collagen in health and disease. Edinburgh: Churchill Livingstone; 1982: 218–243.

    Google Scholar 

  2. Aggeler, J.; Kapp, L. N.; Tseng, S. C. G., et al. Regulation of protein secretion in Chinese hamster ovary cells by cell cycle position and cell density. Plasminogen activator, procollagen and fibronectin. Exp. Cell Res. 139: 275–283; 1982.

    Article  PubMed  CAS  Google Scholar 

  3. Aggeler, J.; Takemura, R.; Werb, Z. High-resolution three-dimensional views of membrane-associated clathrin and cytoskeleton in critical-point-dried macrophages. J. Cell Biol. 97: 1452–1458; 1983.

    Article  PubMed  CAS  Google Scholar 

  4. Birk, D. E.; Trelstad, R. L. Extracellular compartments in matrix morphogenesis: collagen fibril, bundle, and lamellar formation by corneal fibroblasts. J. Cell Biol. 99: 2024–2033; 1984.

    Article  PubMed  CAS  Google Scholar 

  5. Bissell, M. J.; Hall, H. G.; Parry, G. How does the extracellular matrix direct gene expression? J. Theor. Biol. 99: 31–68; 1981.

    Article  Google Scholar 

  6. Charonis, A. S.; Tsilibary, E. C.; Yurchenco, P. D., et al. Binding of type IV collagen to laminin. A morphologic study. J. Cell Biol. 100: 1848–1852; 1985.

    Article  PubMed  CAS  Google Scholar 

  7. Chung, E.; Miller, E. J. Collagen polymorphism: characterization of molecules with the chain composition α1 (III)3 in human tissues. Science 183: 1200–1201; 1974.

    Article  PubMed  CAS  Google Scholar 

  8. De Clerck, Y. A.; Jones, P. A. The effect of ascorbic acid on the nature and production of collagen and elastin by rat smoothmuscle cells. Biochem. J. 186: 217–225; 1980.

    PubMed  Google Scholar 

  9. Dorfman, A. Proteoglycan biosynthesis. In: Hay, E. D., ed. Cell biology of extracellular matrix. New York: Plenum Press; 1981; 115–138.

    Google Scholar 

  10. Erickson, H. P.; Carrell, N.; McDonagh, J. Fibronectin molecule visualized in electron microscopy: a long, thin, flexible strand J. Cell Biol. 91: 673–678; 1981.

    Article  PubMed  CAS  Google Scholar 

  11. Furcht, L. T. Structure and function of the adhesive glycoprotein fibronectin. Mod. Cell Biol. 1: 53–177; 1983.

    Google Scholar 

  12. Furthmayr, H.; Madri, J. A. Rotary shadowing of connective tissue macromolecules. Collagen Relat. Res. 2: 349–363; 1982.

    CAS  Google Scholar 

  13. Hassell, J. R.; Robey, P. G.; Barrach, H.-J., et al. Isolation of a heparan sulfate-containing proteoglycan from basement membrane. Proc. Natl. Acad. Sci. USA 77: 4494–4498;1980.

    Article  PubMed  CAS  Google Scholar 

  14. Hay, E. D. Cell and extracellular matrix: their organization and mutual dependence. Mod. Cell Biol. 2: 509–548; 1983.

    Google Scholar 

  15. Heuser, J. E. Three-dimensional visualization of coated vesicle formation in fibroblasts. J. Cell Biol. 84: 560–583; 1980.

    Article  PubMed  CAS  Google Scholar 

  16. Heuser, J. E.; Kirschner, M. W. Filament organization revealed in platinum replicas of freeze-dried cytoskeletons. J. Cell Biol. 86: 212–234; 1980.

    Article  PubMed  CAS  Google Scholar 

  17. Hynes, R. O. Fibronectin and its relation to cellular structure and behavior. In: Hay, E. D., ed. Cell biology of extracellular matrix. New York: Plenum Press; 1981: 295–334.

    Google Scholar 

  18. Jones, P. A. construction of an artificial blood vessel wall from cultured endothelial and smooth muscle cells. Proc. Natl. Acad. Sci. USA 76: 1882–1886; 1979.

    Article  PubMed  CAS  Google Scholar 

  19. Jones, P. A.; Scott-Burden, T.; Gevers, W. Glycoprotein, elastin, and collagen secretion by rat smooth muscle cells. Proc. Natl. Acad. Sci. USA 76: 353–357; 1979.

    Article  PubMed  CAS  Google Scholar 

  20. Jones, P. A.; Werb, Z. Degradation of connective tissue matrices by macrophages. II. Influence of matrix composition on proteolysis of glycoproteins, elastin, and collagen by macrophages in culture. J. Exp. Med. 152: 1527–1536; 1980.

    Article  PubMed  CAS  Google Scholar 

  21. Klein, L.; Itoh, T.; Geil, P. H. Relationship between collagen fibril and subfibril diameters as revealed by transverse freezefracture and −etching techniques. In: Veis, A., ed. The chemistry and biology of mineralized connective tissues. New York: Elsevier/North-Holland; 1981: 129–132.

    Google Scholar 

  22. Kleinman, H. K.; McGarvey, M. L.; Hassell J. R., et al. Basement membrane complexes with biological activity. Biochemistry 25: 312–318; 1986.

    Article  PubMed  CAS  Google Scholar 

  23. Linsenmayer, T. F., Collagen. In: Hay, E. D., ed. Cell biology of extracellular matrix. New York: Plenum Press; 1981: 5–38.

    Google Scholar 

  24. Rapraeger, A.; Jalkanen, M.; Bernfield, M. Cell surface proteoglycan associates with the cytoskeleton at the basolateral cell surface of mouse mammary epithelial cells. J. Cell Biol. 103:2683–2696; 1986.

    Article  PubMed  CAS  Google Scholar 

  25. Scott-Burden, T.; Murray, E.; Diehl, T., et al. Glycosaminoglycan synthesis by smooth muscle cells cultured in the absence and presence of ascorbic acid. Hoppe-Seyler's Z. Physiol. Chem. 364:61–70; 1983.

    CAS  Google Scholar 

  26. Sear, C. H. J.; Grant, M. E.; Jackson, D. S.. The nature of the microfibrillar glycoproteins of elastic fibers. A biosynthetic study. Biochem. J. 194:587–598; 1981.

    CAS  Google Scholar 

  27. Timpl, R.; Wiedemann, H.; van, Delden, V., et al. A network model for the organization of type IV collagen molecules in basement membranes. Eur. J. Biochem. 120: 203–211; 1981.

    Article  PubMed  CAS  Google Scholar 

  28. Tsilibary, E. C.; Charonis, A. S. The role of the main noncollagenous domain (NCl) in type IV collagen self-assembly. J. Cell Biol. 103:2467–2474; 1986.

    Article  PubMed  CAS  Google Scholar 

  29. Turley, E. A.; Erickson, C. A.; Tucker, R. P. The retention and ultrastructural appearances of various extracellular matrix molecules incorporated into three-dimensional hydrated collagen lattices. Dev. Biol. 109: 347–369; 1985.

    Article  PubMed  CAS  Google Scholar 

  30. Werb, Z.; Banda, M. J.; Jones, P. A. Degradation of connective tissue matrices by macrophages. I. Proteolysis of elastin, glycoproteins. and collagen by proteinases isolated from macrophages. J. Exp. Med. 152: 1340–1357; 1980.

    Article  PubMed  CAS  Google Scholar 

  31. Yamada, K. M. Cell surface interactions. Ann. Rev. Biochem. 52: 761–799; 1983.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

These studies were supported in part by NIH Biomedical Research Support grant S07-RR-05684.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aggeler, J. Three-dimensional organization of the extracellular matrix secreted by cultured rat smooth muscle cells. In Vitro Cell Dev Biol 24, 633–638 (1988). https://doi.org/10.1007/BF02623600

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623600

Key words

Navigation