Skip to main content
Log in

Cerebral microvascular smooth muscle in tissue culture

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

Cerebral endothelium is being studied rather extensively in tissue culture, but no reports are available describing the tissue culture of cerebral microvascular smooth muscle. The present paper describes for the first time the isolation and culture of non-neoplastic mouse cerebral vascular smooth muscle. Microvessels from a dounce homogenate of mouse brain are plated onto plastic culture dishes in Dulbecco’s modified Eagle media plus 20% fetal bovine serum and treated briefly with collagenase. Cells migrate from vessels and proliferate sufficiently to be transferred out of primary culture in 2 to 3 wk. Light microscopy reveals generally broad, polygonal cells that grow collectively in a “hill and valley” pattern. By transmission electron microscopy the cells possess many characteristics of smooth muscle: basal laminas, clusters of pinocytotic vesicles, and bundles of thin filaments. Several ill-defined cell-to-cell junctions are also present. Isoelectric focusing and sodium dodecyl sulfate-electrophoresis of cellular proteins on polyacrylamide gels after pulse labeling cultures with [S-35]methionine demonstrate that these cells actively synthesize a smooth-muscle-specific isoactin, α-actin. The identity of α-actin is confirmed by analysis of NH2-terminal peptides after actin digestion with trypsin and subsequent peptide cleavage with thermolysin. Both their morphology and active synthesis of α-actin strongly suggest that these cells are of smooth-muscle origin. Future studies of their metabolism and interactions with endothelium and astrocytes should provide a better understanding of the cerebral microcirculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bignami, A.; Dahl, D.; Rueger, D. C. Glial fibrillary acidic protein (GFA) in normal neural cells and in pathological conditions. Adv. Cell Neurobiol. 1: 285–310; 1980.

    CAS  Google Scholar 

  2. Bikstad, I.; Markey, F.; Carlson, L.; Persson, T.; Lindberg, U. Selective assay of monomeric and filamentous actin in cell extracts, using inhibition of deoxyribonuclease I. Cell 15: 935–943; 1978.

    Article  Google Scholar 

  3. Bowman, P. D.; Betz, A. L.; Goldstein, G. W. Primary culture of microvascular endothelial cells from bovine retina: selective growth using fibronectin coated substrate and plasma derived serum. In Vitro 18: 626–632; 1982.

    PubMed  CAS  Google Scholar 

  4. Cannon, M. S.; Gelderd, J. B. Spinal cord vasculature of the rat: a histochemical study of the metabolism of arteries and arterioles. Stroke 14: 611–616; 1983.

    PubMed  CAS  Google Scholar 

  5. Cannon, M. S.; Jones, C. E.; Peterson, V. A histochemical evaluation of metabolism in the coronary vasculature of the primate. Blood Vessels 19: 186–196; 1982.

    PubMed  CAS  Google Scholar 

  6. Chamley, J. H.; Campbell, G. R.; McConnell, J. D. Comparison of vascular smooth muscle cells from adult human, monkey and rabbit in primary culture and in subculture. Cell Tiss. Res. 177: 503–522; 1977.

    CAS  Google Scholar 

  7. Chamley-Campbell, J.; Campbell, G. R.; Ross, R. The smooth muscle cell in culture. Physiol. Rev. 59: 1–61; 1979.

    PubMed  CAS  Google Scholar 

  8. Cook, B. H.; Granger, H. J.; Taylor, A. E. On the organ specificity of microvessles: heterogeneity of arteriolar metabolism. Microcirculation, vol. 1. NY: Plenum Press; 1976: 160–162.

    Google Scholar 

  9. Cook, B. H.; Granger, H. J.; Taylor, A. E. Metabolism of coronary arteries and arterioles. Microvasc. Res. 14: 145–159; 1977.

    Article  PubMed  CAS  Google Scholar 

  10. DeBault, L. E.; Kahn, L. E.; Frommes, S. P.; Cancilla, P. A. Cerebral microvessels and derived cells in tissue culture: isolation and preliminary characterization. In Vitro 15: 473–487; 1979.

    Article  PubMed  CAS  Google Scholar 

  11. DeBault, L. E.; Henriquez, E.; Hart, M. N.; Cancilla, P. A. Cerebral microvessels and derived cells in tissue cultures: II. Establishment, identification, and preliminary characterization of an endothelial cell line. In Vitro 17: 480–494; 1981.

    PubMed  CAS  Google Scholar 

  12. Diglio, C. A.; Grammas, P.; Giacomelli, F.; Wiener, J. Primary culture of rat cerebral microvascular endothelial cells. Lab. Invest. 46: 554–563; 1982.

    PubMed  CAS  Google Scholar 

  13. Firtel, R. A. Multigene families encoding actin and tubulin. Cell 24: 6–7; 1981.

    Article  PubMed  CAS  Google Scholar 

  14. Franke, W. W.; Schmid, E.; Vandekerckhove, J.; Weber, K. A permanently proliferating rat vascular smooth muscle cell with maintained expression of smooth muscle characteristics, including actin of the vascular smooth muscle type. J. Cell Biol. 87: 594–600; 1980.

    Article  PubMed  CAS  Google Scholar 

  15. Frederickson, R. G.; Low, F. N. Blood vessels and tissue space associated with the brain of the cat. Am. J. Anat. 125: 123–146; 1969.

    Article  PubMed  CAS  Google Scholar 

  16. Garrels, J. I.; Gibson, W. Identification and characterization of multiple forms of actin. Cell 9: 793–805; 1976.

    Article  PubMed  CAS  Google Scholar 

  17. Groschel-Stewart, U.; Chamley, J. H.; Campbell, G. R.; Burnstock, G. Changes in myosin distribution in dedifferentiating and redifferentiating smooth muscle cells in tissue culture. Cell Tiss. Res. 165: 13–22; 1975.

    Article  CAS  Google Scholar 

  18. Groschel-Stewart, U.; Chamley, J. H.; McConnell, J. D.; Burnstock, G. Comparison of the reaction of cultured smooth and cardiac muscle cells and fibroblasts to specific antibodies to myosin. Histochemie 43: 215–224; 1975.

    Article  CAS  Google Scholar 

  19. Grünwald, J.; Robenek, H.; Mey, J.; Hauss, W. H. In vivo and in vitro cellular changes in experimental hypertension: electronmicroscopic and morphometric studies of aortic smooth muscle cells. Exp. Mol. Pathol. 36: 164–176; 1982.

    Article  PubMed  Google Scholar 

  20. Guyton, J. R. Smooth muscle growth and cholesterol accumulation in atherogenesis. Cardiovascular physiology IV. International review of physiology. vol. 26. Baltimore, MD: University Park Press; 1982: 1–49.

    Google Scholar 

  21. Hirs, C. H. W. The oxidation of ribonuclease with performic acid. J. Biol. Chem. 219: 611–621; 1956.

    PubMed  CAS  Google Scholar 

  22. Kontos, H. A.; Wei, E. P.; Navari, R. M.; Levasseur, J. E.; Rosenblum, W. I.; Patterson, J. L. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am. J. Physiol. 234: H371–383; 1978.

    PubMed  CAS  Google Scholar 

  23. Mauger, J. P.; Worcel, M.; Tassin, J.; Courtois, Y. Contractility of smooth muscle cells of rabbit aorta in tissue culture. Nature 255: 337–338; 1975.

    Article  PubMed  CAS  Google Scholar 

  24. Maynard, A.; Schultz, R. L.; Pease, D. C. Electron microscopy of the vascular bed of rat cerebral cortex. Am. J. Anat. 100: 409–433; 1957.

    Article  PubMed  CAS  Google Scholar 

  25. Pietela, K.; Nikkari, T. Role of the arterial smooth muscle cell in the pathogenesis of atherosclerosis. Med. Biol. 61: 31–44; 1983.

    Google Scholar 

  26. Ross, R.; Kariya, B. Morphogenesis of vascular smooth muscle in atherosclerosis and cell culture. In: Handbook of physiology, section 2: The cardiovascular system, vol. II, Vascular smooth muscle. Bethesda, MD: Am. Physiol. Soc. 1980: 69–91.

    Google Scholar 

  27. Rubenstein, P. A.; Martin, D. J. NH2-terminal processing of actin in mouse L-cells in vivo. J. Biol. Chem. 258: 3961–3966; 1983.

    PubMed  CAS  Google Scholar 

  28. Rubenstein, P. A.; Martin, D. J. NH2-terminal processing ofDrosophila melanogaster actin. J. Biol. Chem. 258: 11354–11360; 1983.

    PubMed  CAS  Google Scholar 

  29. Rubenstein, P. A.; Spudich, J. A. Actin microheterogeneity in chick embryo fibroblasts. Proc. Natl. Acad. Sci. USA 74: 120–123; 1977.

    Article  PubMed  CAS  Google Scholar 

  30. Schmid, E.; Osborn, M.; Rungger-Brändle, E.; Gabbiani, G.; Weber, K.; Franke, W. W. Distribution of vimentin and desmin filaments in smooth muscle tissue of mammalian and avian aorta. Exp. Cell Res. 137: 329–340; 1982.

    Article  PubMed  CAS  Google Scholar 

  31. Schubert, D.; Harris, A. J.; Devine, C. E.; Heinemann, S. Characterization of a unique muscle cell line. J. Cell Biol. 61: 398–413; 1974.

    Article  PubMed  CAS  Google Scholar 

  32. Schwartz, S. M. Cellular proliferation in atherosclerosis and hypertension. Proc. Soc. Exp. Biol. Med. 173: 1–13; 1983.

    PubMed  CAS  Google Scholar 

  33. Strauch, A. R.; Luma, E. J.; LaFountain, J. R., Jr. Biochemical analysis of actin in crane-fly gonial cells: evidence for actin in spermatocytic and spermatids—but not sperm. J. Cell Biol. 86: 315–325; 1980.

    Article  PubMed  CAS  Google Scholar 

  34. Strauch, A. R.; Rubenstein, P. A. A, vascular smooth muscle α-isoactin biosynthetic intermediate: Identification of acetylcysteine at the amino terminus. J. Biol. Chem. In press.

  35. Strauch, A. R.; Rubenstein, P. A. Induction of vascular smooth muscle α-isoactin expression in BC3Hl cells. J. Biol. Chem. In press.

  36. Travo, P.; Weber, K.; Osborn, M. Co-existence of vimentin and desmin type intermediate filaments in a subpopulation of adult rat vascular smooth muscle cells growing in primary culture. Exp. Cell Res. 139: 87–93; 1982.

    Article  PubMed  CAS  Google Scholar 

  37. Vandekerckhove, J.; Weber, K. At least six different actins are expressed in a higher animal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J. Mol. Biol. 126: 783–802; 1978.

    Article  PubMed  CAS  Google Scholar 

  38. Vandekerckhove, J.; Weber, K. Actin typing on total cellular extracts. Eur. J. Biochem. 113: 595–603; 1981.

    Article  PubMed  CAS  Google Scholar 

  39. Whalen, R. G.; Butler-Browne, G. S.; Gros, F. Protein synthesis and actin heterogeneity in calf muscle cells in culture. Proc. Natl. Acad. Sci. USA 73: 2018–2022; 1976.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by Veteran’s Administration Research Funds, National Institutes of Health Grant HL 14230 (Arteriosclerosis Specialized Center of Research, sponsored by the National Heart, Lung, and Blood Institute), and Cardiovascular Research Program Project Grant from the National Institutes of Health to the University of Iowa (HL-14388). A. R. S. is a postdoctoral fellow of the National Institute of General Medical Sciences (GM-09020). P. A. R. is an established investigator of the American Heart Association.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, S.A., Strauch, A.R., Yoder, E.J. et al. Cerebral microvascular smooth muscle in tissue culture. In Vitro 20, 512–520 (1984). https://doi.org/10.1007/BF02619625

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02619625

Key words

Navigation