Skip to main content
Log in

Defining the immune mechanism with monoclonal antibodies

  • Symposium-Tissue Culture Association
  • Published:
In Vitro Aims and scope Submit manuscript

Summary

It has long been realized that only the study of homogeneous antibodies or cell populations could enable a definitive understanding of much of the immune mechanism. Hybridoma technology has greatly facilitated such approaches. Hybridoma antibodies have been used to delineate both B cell and T cell subpopulations. T cell studies per se have been accomplished by the use of T cell hybridoma cell lines producing a variety of factors. Anti-idiotypes against B cell hybridoma antibodies have been used to characterize T cell receptors and factors. B cell studies have been facilitated by hybridomas that have made available the immunoglobulin of pre-B cells or defective B cell lines. Hybridoma antibodies have also been used to dissect closely related antibody families and the potential for responsiveness against a variety of antigenic determinants. Finally, hybridomas have provided a primary source of material for protein and DNA sequence analysis. In our laboratories hybridoma antibodies derived against the murine H-2 locus have demonstrated the ability of B cell antibodies to discriminate amongst H2 mutants—a capacity previously attributed only to T cell specificities. Hybridoma antibodies have also been generated by fusions with antigen stimulated neonatal B cells to provide homogeneous antibodies reflective of the earliest developmental immunoglobulin readout. Such probes should increase our understanding of the processes involved in the generation of both the T and B cell repertoires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kunkel, H. G.; Natvig, J. B. Human immunoglobulins: Clones, subclasses, genetic variants, and idiotypes. Adv. Immunol. 16: 1–59; 1973.

    PubMed  Google Scholar 

  2. Potter, M.; Leiberman, R. Common individual antigenic determinants in five of eight BALB/c IgA myeloma proteins that bind phosphorylcholine. J. Exp. Med. 132: 737–751; 1970.

    Article  PubMed  CAS  Google Scholar 

  3. Edelman, G. M.; Cunningham, B. A.; Gall, W. E.; Gottlieb, P. D.; Rutishauser, U.; Waxdal, M. J. The covalent structure of an entire γG immunoglobulin molecule. Proc. Natl. Acad. Sci. USA 63: 78–85; 1969.

    Article  PubMed  CAS  Google Scholar 

  4. Krause, R. M. The search for antibodies with molecular uniformity. Adv. Immunol. 12: 1–56; 1970.

    PubMed  CAS  Google Scholar 

  5. Haber, E. Antibodies of restricted heterogeneity for structural study. Fed. Proc. 29: 66–71; 1970.

    PubMed  CAS  Google Scholar 

  6. Kuettner, M. G.; Wang, A.; Nisonoff, A. Quantitative investigations of idiotypic antibodies VI. Idiotypic specificity as a potential genetic marker for the variable region of mouse immunoglobulin polypeptide chain. J. Exp. Med. 135: 579–595; 1972.

    Article  PubMed  CAS  Google Scholar 

  7. Kluskens, L.; Kohler, H. Regulation of immune response by autologous antibody against receptor. Proc. Natl. Acad. Sci. USA 71: 5083–5087; 1974.

    Article  PubMed  CAS  Google Scholar 

  8. Oudin, J. Idiotypy of antibodies. Antigens 2: 277–374; 1974.

    CAS  Google Scholar 

  9. Eichmann, K.; Rajewsky, K. Induction of T and B cell immunity by anti-idiotypic antibody. Eur. J. Immunol. 5: 661; 1979.

    Article  Google Scholar 

  10. Bosma, M. J.; Weiler, E. The clonal nature of antibody formation I. Clones of antibody-forming cells of poly-D-alanine specificity. J. Immunol. 104: 203–214; 1970.

    PubMed  CAS  Google Scholar 

  11. Askonas, B. A.; Williamson, A. R. Factors affecting the propagation of a B cell clone forming antibody to the 2,4-dinitrophenyl group. Eur. J. Immunol. 2: 487–493; 1972.

    Article  PubMed  CAS  Google Scholar 

  12. Lefkovitz, I. Induction of antibody-forming cell clones in microcultures. Eur. J. Immunol. 2: 360–365; 1972.

    Article  Google Scholar 

  13. Klinman, N. R. Antibody with homogeneous antigen binding produced by splenic foci in organ culture. Immunochemistry 6: 757–759; 1969.

    Article  PubMed  CAS  Google Scholar 

  14. Klinman, N. R. The mechanism of antigenic stimulation of primary and secondary clonal precursor cells. J. Exp. Med. 136: 241–260; 1972.

    Article  PubMed  CAS  Google Scholar 

  15. Klinman, N. R.; Press, J. L. The characterization of the B cell repertoire specific for the DNP and TNP determinants in neonatal BALB/c mice. J. Exp. Med. 141: 1133–1146; 1975.

    Article  PubMed  CAS  Google Scholar 

  16. Sigal, N. H.; Gearhart, P. J.; Press, J. L.; Klinman, N. R. The late acquisition of a “germline” antibody specificity. Nature 259: 51–52; 1976.

    Article  PubMed  CAS  Google Scholar 

  17. Cancro, M. P.; Klinman, N. R. B cell repertoire ontogeny: Heritable but dissimilar development of parental and F1 repertoire. J. Immunol. 126: 1160–1164; 1981.

    PubMed  CAS  Google Scholar 

  18. Kohler, H.; Fung, J. Analysis of the early nonregulated germ line precursor repertoire for PC. In: Klinman, N.; Mosier, D.; Scher, I.; Vitetta, E. eds. B lymphocytes in the immune response—functional, developmental and interactive processes. New York: Elsevier/North Holland; 1981: 69–76.

    Google Scholar 

  19. Gearhart, P.; Sigal, N.; Klinman, N. Heterogeneity of the BALB/c antiphosphorylcholine antibody response at the precursor cell level. J. Exp. Med. 141: 56–71; 1975.

    Article  PubMed  CAS  Google Scholar 

  20. Gearhart, P. J.; Sigal, N. H.; Klinman, N. R. Production of antibodies of identical idiotype but diverse immunoglobulin classes by cells derived from a single stimulated B cell. Proc. Natl. Acad. Sci. USA 72: 1707–1711; 1975.

    Article  PubMed  CAS  Google Scholar 

  21. Klinman, N. R. Regain of homogeneous binding activity after recombination of chains of monofocal antibody. J. Immunol. 106: 1336–1344; 1971.

    Google Scholar 

  22. Sherman, L. A. Dissection of the B10.D2 anti-H-2Kb cytolytic T lymphocyte receptor repertoire. J. Exp. Med. 151: 1386–1397; 1980.

    Article  PubMed  CAS  Google Scholar 

  23. Baker, P. E.; Gillis, S.; Smith, K. Monoclonal cytolytic T cell lines. J. Exp. Med. 149: 273–278; 1979.

    Article  PubMed  CAS  Google Scholar 

  24. Nabholz, M.; Engers, H. D.; Collavo, D.; North, M. Clonal T cell lines with specific cytolytic activity. Curr. Top. Microbiol. Immunol. 81: 176–188; 1978.

    PubMed  CAS  Google Scholar 

  25. Kohler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495–497; 1975.

    Article  PubMed  CAS  Google Scholar 

  26. Marshak-Rothstein, A.; Siekervitz, M.; Margolies, M. N.; Mudget-Hunter, M.; Gefter, M. L. Hybridoma proteins expressing the predominant idiotype of the anti-azophenylarsonate response of A/J mice. Proc. Natl. Acad. Sci. USA 77: 1120–1129; 1980.

    Article  PubMed  CAS  Google Scholar 

  27. Gearhart, P. J.; Johnson, N. D.; Douglas, R.; Hood, L. IgG antibodies to phosphorylcholine exhibit more diversity than their IgM counterparts. Nature 291: 29–34; 1981.

    Article  PubMed  CAS  Google Scholar 

  28. Shilling, J.; Clevinger, B.; Davie, J. M.; Hood, L. Amino acid sequence of homogenous antibodies to dextran and DNA rearrangements in heavy chain V region gege segments. Nature 283: 35–40; 1980.

    Article  Google Scholar 

  29. Kearney, J. F. Pre B cell derived hybridomas. In: Klinman, N.; Mosier, D.; Scher, I.; Vitetta, E. B lymphocytes in the immune response—functional, developmental and interactive processes. New York: Elsevier/North Holland; 1981: 27–32.

    Google Scholar 

  30. Wood, C. J.; Kuehl, M. W. Expression of surface and secreted IgG2a by a murine B-lymphoma before and after hybridization to myeloma cells. Mol. Immunol. 18: 311–322; 1981.

    Article  Google Scholar 

  31. Tada, T.; Hayakawa, K. Antigen-specific helper and suppressor factors. In: Fougereau, M.; Daussett, J. eds. Immunology 80—progress in immunology IV. London: Academic Press; 1981: 389–402.

    Google Scholar 

  32. Estess, P.; McCumber, L.; Siegelman, M.; Waldschmidt, T.; Pacifico, A.; Capra, D. The arsonate system of A/J mice: structural and serologic studies on the induced serum antibodies and the products of B and T cell hybridomas. In: Fougereau, M.; Daussett, J. eds. Immunology 80—progress in immunology IV. London: Academic Press; 1981: 389–402.

    Google Scholar 

  33. Kappler, J. W.; Skidmore, B.; White, J.; Marrack, P. Antigen inducible H-2 restricted, interleukin-2-producing T cell hybridomas. Lack of independent antigen and H-2 recognition. J. Exp. Med. 153: 1198–1214; 1981.

    Article  PubMed  CAS  Google Scholar 

  34. Blomberg, B.; Geckler, W.; Weigert, M. Genetics of the antibody response to dextran in mice. Science 177: 178–180; 1972.

    Article  PubMed  CAS  Google Scholar 

  35. Stashenko, P.; Klinman, N. R. Analysis of the primary anti(4-hydroxy-3-nitrophenyl)acetyl(NP) responsive B cells in BALB/c and B10-D2 mice. J. Immunol. 125: 531–537; 1980.

    PubMed  CAS  Google Scholar 

  36. Imanishi-Kari, T.; Reth, M.; Hammerling, G. J.; Rajewsky, K. Analysis of V-gene expression in the immune response by cell fusion. Curr. Top. Microbiol. Immunol. 81: 20–28; 1978.

    Google Scholar 

  37. Lamoyi, E.; Estess, P.; Capra, D.; Nisonoff, A. Heterogeneity of an intrastain cross-reactive idiotype associates with anti-p-azophenylarsonate to antibodies of A/J mice. J. Immunol. 124: 2834–2840; 1980.

    PubMed  CAS  Google Scholar 

  38. Cancro, M. P.; Gerhard, W.; Klinman, N. R. Diversity of the primary influenza specific B cell repertoire in BALB/c mice. J. Exp. Med. 147: 776–788; 1978.

    Article  PubMed  CAS  Google Scholar 

  39. Gerhard, W.; Yewdell, J.; Frankel, M.; Lopes, A. D.; Staudt, L. Monoclonal antibodies against influenza virus. In: Kenneth, R.; McKearn, T.; Bechtol, K. eds. Monoclonal antibodies hybridomas: A new dimension in biological analyses. New York: Plenum Publishing Corporation; 1981: 317–333.

    Google Scholar 

  40. Wilson, J. A.; Skekel, T. J.; Wiley, D. C. Structure of the hemagglutinin membrane glycoprotein of influenza virus at 3A° resolution. Nature 289: 366–373; 1981.

    Article  PubMed  CAS  Google Scholar 

  41. Levy, R.; Dilley, J.; Brown, S.; Bergman, Y. Mouse X human hybridomas. In: Kennett, R.; McKearn, T.; Bechtol, K. eds. Monoclonal antibodies— hybridomas: A new dimension in biological analyses. New York: Plenum; 1981: 137–153.

    Google Scholar 

  42. Nadler, L. M.; Stashenko, P.; Hardy, R.; Schlossman, S. F. A monoclonal antibody defining a lymphocyte-associated antigen in man. J. Immunol. 125: 570–577; 1980.

    PubMed  CAS  Google Scholar 

  43. Ledbetter, J. A.; Goding, J. W.; Tokuhisa, T.; Herzenberg, L. A. Murine T cell differentiation antigens detected by monoclonal antibodies. In: Kennett, R.; McKearn, T.; Bechtol, K. eds. Monoclonal antibodies—hybridomas: A new dimension in biological analyses. New York: Plenum; 1981: 235–249.

    Google Scholar 

  44. Coffman, R. L.; Weissman, I. L. A monoclonal antibody that recognizes B cells and B cell precursors in mice. J. Exp. Med. 153: 269–279; 1981.

    Article  PubMed  CAS  Google Scholar 

  45. Kincade, P.; Lee, G.; Watanabe, T.; Paige, C.; Scheid, M. P.; Medlock, E. S.; Landreth, K. S. Dissecting precursor populations with conventional and monoclonal antibodies. In: Klinman, N.; Mosier, D.; Scher, I.; Vitetta, E. eds. B lymphocytes in the immune response—functional development and interactive processes. New York: Elsevier/North Holland; 1981: 89–94.

    Google Scholar 

  46. Springer, T. A. Cell-surface differentiation in the mouse. Characterization of “jumping” and “lineage” antigens using xenogeneic rat monoclonal antibodies. In: Kennett, R.; McKearn, T.; Bechtol, K. eds. Monoclonal antibodies—hybridomas: A new dimension in biological analyses. New York: Plenum; 1981: 185–217.

    Google Scholar 

  47. Sherman, L. A.; Randolph, C. P. Monoclonal anti-H-2Kb antibodies detect serological differences between H-2Kb mutants. Immunogenetics 12: 183–186; 1981.

    Article  PubMed  CAS  Google Scholar 

  48. Press, J. L.; Klinman, N. R. Isoelectric analysis of neonatal monofocal antibody. Immunochemistry 10: 621–627; 1973.

    Article  PubMed  CAS  Google Scholar 

  49. Kennett, R.; Denis, K.; Tung, A.; Klinman, N. Hybrid plasmacytoma production: Fusions with adult spleen cells, monoclonal spleen fragments, neonatal spleen cells and human spleen cells. Curr. Top. Microbiol. 81: 77–91; 1978.

    CAS  Google Scholar 

  50. Denis, K.; Kennett, R.; Klimman, N.; Molinaro, C.; Sherman, L. Defining the B cell repertoire with hybridomas derived from monoclonal fragment cultures. In: Kennett, R.; McKearn, T.; Bechtol, K. eds. Monoclonal antibodies—hybridomas: A new dimension in biological analyses. New York: Plenum; 1981: 49–58.

    Google Scholar 

  51. Sigal, N. H.; Klinman, N. R. The B cell clonotype repertoire. Adv. Immunol. 26: 255–337; 1978.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by United States Public Health Service Grants AI 15797 and AI 15710. This symposium was supported in part by the following organizations: Bethesda Research Laboratories, Cetus Corporation, Hybritech Incorporated, MAB-Monoclonal Antibodies, Inc., National Capital Area Branch of the Tissue Culture Association, New England Nuclear Corporation, and Ortho Pharmaceutical Corporation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klinman, N.R., Denis, K.A. & Sherman, L.A. Defining the immune mechanism with monoclonal antibodies. In Vitro 17, 1029–1035 (1981). https://doi.org/10.1007/BF02618600

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02618600

Key words

Navigation