Skip to main content
Log in

Effect of sodium butyrate on the hepatoma cell cycle: Possible use for cell synchronization

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

Exposure of HTC cells to sodium butyrate caused inhibition of growth. The site of growth inhibition was studied by time-lapse cinematography and [3H]thymidine incorporation studies. Evidence is presented that sodiunm butyrate affected the cell cycle at a specific point immediately after mitosis. Inasmuch as it does not modify the interphase duration after its removal, butyrate may be used for HTC synchronization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson, G. S.; Friedman, R. M.; Pastan, I. Restoration of several morphological characteristics of normal fibroblasts in sarcoma cells treated with adenosine 3′,5′-cyclic monophosphate and its derivatives. Proc. Natl. Acad. Sci. USA 68: 425–429; 1971.

    Article  PubMed  CAS  Google Scholar 

  2. van Wijk, R.; Wicks, W. D.; Clay, K. Effects of derivatives of cyclic 3′,5′-adenosine monophosphate on the growth, morphology and gene expression of hepatoma cells in culture. Cancer Res. 32: 1905–1911; 1972.

    Google Scholar 

  3. Wahrman, J. P.; Winand, R.; Luzatti, D. Effect of cyclic AMP on growth and morphological differentiation of an established myogenic cell line. Nature (New Biol.) 245: 112–113; 1973.

    Google Scholar 

  4. Prasad, K. N.; Hsie, A. W. Morphological differentiation of mouse neuroblastoma cells induced in vitro by dibutyryl adenosine 3′∶5′ cyclic monophosphate. Nature (New Biol.) 233: 141–142; 1971.

    CAS  Google Scholar 

  5. Glazer, R. I.; Schneider, F. H. Effects of adenosine 3′,5′-monophosphate and related agents on ribonucleic acid synthesis and morphological differentiation in mouse neuroblastoma cells in culture. J. Biol. Chem. 250: 2745–2749; 1975.

    PubMed  CAS  Google Scholar 

  6. Laug, W. E.; Jones, P. A.; Nye, C. A.; Benedict, W. F. The effect of cyclic AMP and prostaglandins on the fibrinolytic activity of mouse neuroblastoma cells. Biochem. Biophys Res. Commun. 68: 114–119; 1976.

    Article  PubMed  CAS  Google Scholar 

  7. Wright, J. A. Morphology and growth rate changes in Chinese hamster cells cultured in presence of sodium butyrate. Exp. Cell Res. 78: 456–460; 1973.

    Article  PubMed  CAS  Google Scholar 

  8. Weber, G. The molecular correlation concept of neoplasia and the cyclic AMP system. Schultz J.; Gratzner, H. G.; eds. The role of cyclic nucleotides in carcinogenesis. New York: Academic Press. 1973: 57–102.

    Google Scholar 

  9. Sandor, R. Inhibition of human rhabdomyosarcoma-cell growth in agar by dibutyryl cyclic AMP. J. Natl. Cancer Inst. 51: 257–259; 1973.

    PubMed  CAS  Google Scholar 

  10. Helson, L.; Lai, K.; Young, C. W. Papaverine-induced changes in cultured human melanoma cells. Biochem. Pharmacol. 23: 2917–2920; 1974.

    Article  PubMed  CAS  Google Scholar 

  11. Ginsburg, E.; Salomon, D.; Sreevalsa, T.; Freese, E. Growth inhibition and morphological changes caused by lipophilic acid in mammalian cells. Proc. Natl. Acad. Sci. USA 70: 2457–2461; 1973.

    Article  PubMed  CAS  Google Scholar 

  12. Hagopian, H. K.; Riggs, M. G.; Swartz, L. A.; Ingram, V. M. Effect ofN-butyrate on DNA synthesis in chick fibroblasts and HeLa cells. Cell 12: 855–860; 1977.

    Article  PubMed  CAS  Google Scholar 

  13. Chou, J. Y.; Robinson, J. C.; Wang, S.-S. Effects of sodium butyrate on synthesis of human chorionic gonadotropin in trophoblastic and nontrophoblastic tumours. Nature 268: 543–544; 1977.

    Article  PubMed  CAS  Google Scholar 

  14. Altenburg, P. C.; Via, D. P.; Steiner, S. H. Modification of the phenotype of murine sarcoma virus-transformed cells by sodium butyrate. Effects on morphology and cytoskeletal elements. Exp. Cell Res. 102: 223–231; 1976.

    Article  PubMed  CAS  Google Scholar 

  15. Leibovitch, M.-P.; Kruh, J. Effect of sodium butyrate on myoblast growth and differentiation. Biochem. Biophys. Res. Commun. 87: 896–903; 1979.

    Article  PubMed  CAS  Google Scholar 

  16. Fiszman, M. Y.; Montarras, D.; Wright, W.; Gros, F. Expression of myogenic differentiation and myotube formation by chick embryo myoblasts in the presence of sodium butyrate. Exp. Cell Res. 126: 31–37; 1980.

    Article  PubMed  CAS  Google Scholar 

  17. Prasad, K. N.; Kumar, S.; Gilmer, K.; Vernadakis, A. Cyclic AMP-induced differentiated neuroblastoma cells: changes in total nucleic acid and protein contents. Biochem. Biophys. Res. Commun. 50: 973–977; 1973.

    Article  PubMed  CAS  Google Scholar 

  18. van Wijk, R.; Poll, K. W. van de; Amesz, W. J. C.; Geilenkirchen, W. L. M. Studies on the variations in generation times of rat hepatoma cells in culture. Exp. Cell Res. 109: 371–379; 1977.

    Article  PubMed  Google Scholar 

  19. van Wijk, R.; Poll, K. W. van de. Variability of cell generation times in a hepatoma cell pedigree. Cell Tissue Kinet. 12: 659–663; 1979.

    PubMed  Google Scholar 

  20. Thompson, E. B.; Tomkins, G. M.; Curran, J. F. Induction of tyrosine α-ketoglutarate transaminase by steroid hormones in a newly established tissue culture cell line. Proc. Natl. Acad. Sci. USA 56: 296–303; 1966.

    Article  PubMed  CAS  Google Scholar 

  21. Hershko, A.; Tompkins, G. M. Studies on the degradation of tyrosine aminotransferase in hepatoma cells in culture. J. Biol. Chem. 246: 710–714; 1971.

    PubMed  CAS  Google Scholar 

  22. Smith, J. A.; Martin, L. Do cells cycle? Proc. Natl. Acad. Sci. USA 70: 1263–1267; 1973.

    Article  PubMed  CAS  Google Scholar 

  23. Burger, M. M. Surface changes in transformed cells detected by lectins. Fed. Proc. 32: 91–101; 1973.

    PubMed  CAS  Google Scholar 

  24. Borenfreund, E.; Schmid, E.; Bendich, A.; Franke, W. W. Constitutive aggregates of intermediatesized filaments of the vimentin and cytokeratin type in cultured hepatoma cells and their dispersal by butyrate. Exp. Cell Res. 127: 215–235; 1980.

    Article  PubMed  CAS  Google Scholar 

  25. Blose, S. H. Ten-nanometer filaments and mitosis: maintenance of structural continuity in dividing endothelial cells. Proc. Natl. Acad. Sci. USA 76: 3372–3376; 1979.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by l'Institut Nationale de la Santé et de la Recherche Médicale and la Centre Nationale de la Recherche Scientifique (L. T. and J. K.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Wijk, R., Tichonicky, L. & Kruh, J. Effect of sodium butyrate on the hepatoma cell cycle: Possible use for cell synchronization. In Vitro 17, 859–862 (1981). https://doi.org/10.1007/BF02618280

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02618280

Key words

Navigation