Skip to main content
Log in

The relationship between growth phase and cyanogenesis inPseudomonas aeruginosa

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In batch cultures ofPseudomonas aeruginosa, hydrogen cyanide is produced primarily during the transition between logarithmic and stationary phases. This transient response is due to the synthesis of the enzyme system of cyanogenesis during mid to late logorithmic and the inactivation of this system in early stationary phase. Although glycine, the metabolic precursor of cyanide, stimulates cyanogenesis, it is not necessary to incorporate this amino acid in the growth medium to produce elevated enzyme levels. Under conditions of iron limitation (1×10−6 M), phosphate limitation (0.1 mM), and excess phosphate (250 mM), the culture produces low levels of the cyanogenic enzyme system. Increasing the carbon and energy source,l-glutamate, prolongs cyanogenesis and postpones the inactivation of the cyanogenic enzyme system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Asmus, E., Garschagen, H. 1953. The use of barbituric acid for the photometric determination of cyanide and thiocyanate. Zeitschrift für Analytische Chemie138:414–422.

    Article  CAS  Google Scholar 

  2. Castric, P. A. 1975. Hydrogen cyanide, a secondary metabolite ofPseudomonas aeruginosa. Canadian Journal of Microbiology21:613–618.

    Article  PubMed  CAS  Google Scholar 

  3. Castric, P. A. 1977. Glycine metabolism byPseudomonas aeruginosa: Hydrogen cyanide biosynthesis. Journal of Bacteriology130:826–831.

    PubMed  CAS  Google Scholar 

  4. Demain, A. L., Piret, J. M., Friebel, T. E., Vandamme, E. J., Matteo, C. C. 1976. Studies onBacillus brevis directed towards the cell-free synthesis of gramicidin S, pp. 437–443. In: Schlessinger, D. (ed.), Microbiology—1976. Washington, D.C.: American Society for Microbiology.

    Google Scholar 

  5. Drew, S. W., Demain, A. L. 1977. Effect of primary metabolites on secondary metabolism. Annual Review of Microbiology31:343–356.

    Article  PubMed  CAS  Google Scholar 

  6. Fujikawa, K., Suzuki, T., Kurahashi, K. 1968. Biosynthesis of tyrocidine by a cell-free enzyme system ofBacillus brevis ATCC 8185. 1. Preparation of partially purified enzyme system and its properties. Biochimica et Biophysica Acta161:232–246.

    PubMed  CAS  Google Scholar 

  7. Gallo, M., Katz, E. 1972. Regulation of secondary metabolite biosynthesis: Catabolite repression of phenoxazinone synthase and and actinomycin formation by glucose. Journal of Bacteriology109:659–667.

    PubMed  CAS  Google Scholar 

  8. Knowles, C. J. 1976. Microorganisms and cyanide. Bacteriological Reviews40:652–680.

    PubMed  CAS  Google Scholar 

  9. Krupinski, V. M., Robbers, J. E., Floss, H. G. 1976. Physiological study of ergot: Induction of alkaloid synthesis by tryptophan at the enzymatic level. Journal of Bacteriology125:158–165.

    PubMed  CAS  Google Scholar 

  10. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry193:265–275.

    PubMed  CAS  Google Scholar 

  11. Matteo, C. C., Glade, M., Tanaka, A., Piret, J., Demain, A. L. 1975. Microbiological studies on the formation of gramicidin S synthetases. Biotechnology and Bioengineering17:129–142.

    Article  CAS  Google Scholar 

  12. Meganathan, R., Castric, P. A. 1977. The effect of inorganic phosphate on cyanogenesis byPseudomonas aeruginosa. Archives of Microbiology114:51–54.

    Article  PubMed  CAS  Google Scholar 

  13. Niven, D. F., Collins, P. A., Knowles, C. J. 1975. The respiratory system ofChromobacterium violaceum grown under conditions of high and low cyanide evolution. Journal of General Microbiology90:271–285.

    PubMed  CAS  Google Scholar 

  14. Rodgers, P. B., Knowles, C. J. 1978. Cyanide production and degradation during growth ofChromobacterium violaceum. Journal of General Microbiology108:261–267.

    CAS  Google Scholar 

  15. Switzer, R. L. 1977. The inactivation of enzymes in vivo. Annual Review of Microbiology31:135–157.

    Article  PubMed  CAS  Google Scholar 

  16. Weinberg, E. D. 1971. Secondary metabolism; Raison d’etre. Perspectives in Biology and Medicine14:565–577.

    PubMed  CAS  Google Scholar 

  17. Weinberg, E. D. 1974. Secondary metabolism: Control by temperature and inorganic phosphate. Developments in Industrial Microbiology15:70–81.

    CAS  Google Scholar 

  18. Weinberg, E. D. 1977. Mineral element control of microbial secondary metabolism, pp. 289–315. In: Weinberg, E. D. (ed.), Microorganisms and minerals. New York: M. Dekker.

    Google Scholar 

  19. Wissing, F. 1968. Growth curves and pH-optima for cyanide producing bacteria. Physiologia Plantarum21:589–593.

    Article  CAS  Google Scholar 

  20. Wissing, F. 1974. Cyanide formation from oxidation of glycine by aPseudomonas species. Journal of Bacteriology117:1289–1294.

    PubMed  CAS  Google Scholar 

  21. Wissing, F. 1975. Cyanide production from glycine by a homogenate from aPseudomonas species. Journal of Bacteriology121:695–699.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castric, P.A., Ebert, R.F. & Castric, K.F. The relationship between growth phase and cyanogenesis inPseudomonas aeruginosa . Current Microbiology 2, 287–292 (1979). https://doi.org/10.1007/BF02602861

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02602861

Keywords

Navigation