Skip to main content
Log in

Densification behavior of tungsten heavy alloy based on master sintering curve concept

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The master sintering curve (MSC) theory is modified by substituting the densification ratio (φ) for the densification parameter (ψ) to identify regions where shrinkage occurs by a similar combination of sintering mechanisms. The modified MSC theory is used to analyze the results of dilatometry experiments conducted with W-Ni-Fe heavy alloys, in which a phase change occurs during sintering. Apparent activation energies for sintering in three regions (solid state, transition, and liquid phase) are calculated. These activation energies are compared with experimental values for diffusion and other mass-transport phenomena to identify the dominant mechanisms in each region. A series of master sinter curves for varying W contents are developed into a master sintering surface that includes tungsten content and integral work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Belhadjhamida and R.M. German: inTungsten and Tungsten Alloys, A. Crowson and E.S. Chen, eds., TMS, Warrendale, PA, 1991, pp. 21–26.

    Google Scholar 

  2. R.H. Krock:Proc. American Society for Testing and Materials, ASTM, Philadelphia, PA, 1964, vol. 64, pp. 669–79.

    Google Scholar 

  3. S. Farooq, A. Bose, and R.M. German: inProgress in Powder Metallurgy, C.L. Freeby and H. Hjort, eds., MPIF-APMI, Princeton, NJ, 1987, vol. 43, pp. 65–77.

    Google Scholar 

  4. J.K. Park, S.J.L. Kang, K.Y. Eun, and D.N. Yoon:Metall. Trans. A, 1989, vol. 20A, pp. 837–45.

    CAS  Google Scholar 

  5. J.L. Johnson and R.M. German:Metall. Mater. Trans. B, 1996, vol. 27B, pp. 901–09.

    CAS  Google Scholar 

  6. J.L. Johnson and R.M. German:Metall. Mater. Trans. A, 1996, vol. 27A, pp. 441–50.

    CAS  Google Scholar 

  7. R.M. German:Sintering Theory and Practice, John Wiley & Sons, New York, NY, 1996, pp. 67–141, 225–312.

    Google Scholar 

  8. J. Liu and R.M. German:Metall. Mater. Trans. A, 2001, vol. 32A, pp. 3125–31.

    CAS  Google Scholar 

  9. H. Su and D.L. Johnson:J. Am. Ceram. Soc., 1996, vol. 79, pp. 3211–17.

    Article  CAS  Google Scholar 

  10. G.C. Kuczynski:Trans. Am. Inst. Mining Met. Eng., 1949, vol. 185 (2), pp. 169–78.

    Google Scholar 

  11. H. Su and D.L. Johnson:J. Am. Ceram. Soc., 1996, vol. 79 (12), pp. 3199–210.

    Article  CAS  Google Scholar 

  12. R.M. Cannon and R.L. Coble: inDeformation of Ceramic Materials, R.C. Bradt and R.E. Tressler, eds., Plenum Press, New York, NY, 1975, pp. 81–100.

    Google Scholar 

  13. J.T. Smith:J. Appl. Phys., 1965, vol. 36 (2), pp. 595–98.

    Article  CAS  Google Scholar 

  14. T. Vasilos and J.T. Smith:J. Appl. Phys., 1964, vol. 35 (1), pp. 215–17.

    Article  CAS  Google Scholar 

  15. R.M. German:Liquid Phase Sintering, Plenum Press, New York, NY, 1985, pp. 101–21.

    Google Scholar 

  16. W.D. Kingery:J. Appl. Phys., 1959, vol. 30 (3), pp. 301–06.

    Article  CAS  Google Scholar 

  17. G.H. Gessinger and H.F. Fischmeister:J. Less-Common Met., 1972, vol. 27, pp. 129–41.

    Article  CAS  Google Scholar 

  18. G.H. Gessinger, H.F. Fischmeister, and H.L. Lukas:Acta Metall., 1973, vol. 21, pp. 715–24.

    Article  CAS  Google Scholar 

  19. M.-H. Teng, Y.-C. Lai, and Y.-T. Chen:West. Pac. Earth Sci., 2002, vol. 2 (2), pp. 171–80.

    Google Scholar 

  20. D.C. Blaine, J.D. Gurosik, S.J. Park, D. Heaney, and R.M. German:Metall. Mater. Trans. A, 2006, vol. 37A, pp. 715–20.

    CAS  Google Scholar 

  21. P. Villars, A. Prince, and H. Okamoto:Handbook of Ternary Alloy Phase Diagrams, ASM INTERNATIONAL, Materials Park, OH, 1995, vol. 8.

    Google Scholar 

  22. S.H. Hong and H.J. Ryu:Mater. Sci. Eng., A, 2003, vol. 344 (1–2), pp. 253–60.

    Google Scholar 

  23. A.P. Savitskii:Liquid Phase Sintering of the Systems with Interacting Components, Russian Academy of Sciences, Siberian Branch, Institute of Strength Physics and Materials Science, Tomsk, 1993, pp. 97–105.

    Google Scholar 

  24. J.S. Lee and I.H. Moon:Scripta Metall., 1987, vol. 21, pp. 1175–78.

    Article  CAS  Google Scholar 

  25. J.S. Lee and T.H. Kim:Nanostruct. Mater., 1995, vol. 6, pp. 691–94.

    Article  Google Scholar 

  26. H. Mehrer:Diffusion in Solid Metals and Alloys, Landolt-Börnstein Numerical Data and Functional Relationships, New Series, Group III, Spring-Verlag, Berlin, Germany, 1990, vol. 26, pp. 32–84, 297–371, 630–716.

    Book  Google Scholar 

  27. A.R. Wilson:Metall. Rev., 1965, vol. 10 (40), pp. 381–590.

    Google Scholar 

  28. F.J. Cherne and M.I. Baskes:Phys. Rev. B: Condens. Matter Mater. Phys., 2002, vol. 65, p. 024209.

    Google Scholar 

  29. J.P. Leonard, T.J. Renk, M.O. Thompson, and M.J. Aziz:Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2803–07.

    CAS  Google Scholar 

  30. I. Yokoyama and T. Arai:J. Non-Cryst. Solids, 2001, vols. 293–295, pp. 806–11.

    Article  Google Scholar 

  31. I. Yokoyama:Physica B, 1999, vol. 271, pp. 230–34.

    Article  CAS  Google Scholar 

  32. C. Guminski:Liquid Metal Systems, H.U. Borgstedt and G. Frees, eds., Plenum Press, New York, NY, 1995, pp. 345–56.

    Google Scholar 

  33. F. Dore, C.L. Martin, and C.H. Allibert:Mater. Sci. Eng., A, 2004, vol. 383, pp. 390–98.

    Article  Google Scholar 

  34. F.A. da Costa, A.G.P. da Silva, and U.U. Gomes:Powder Technol., 2003, vol. 134, pp. 123–32.

    Article  Google Scholar 

  35. D.G. Kim, G.S. Kim, S.T. Oh, and Y.D. Kim:Mater. Lett., 2004, vol. 58, pp. 578–81.

    Article  CAS  Google Scholar 

  36. H.R. de Macedo, A.G.P. da Silva, and D.M.A. de Melo:Mater. Lett., 2003, vol. 57, pp. 3924–32.

    Article  Google Scholar 

  37. N.M. Hwang, Y.J. Park, D.Y. Kim, and D.Y. Yoon:Scripta Mater., 2000, vol. 42, pp. 421–25.

    Article  CAS  Google Scholar 

  38. R.M. German:Particle Packing Characteristics, MPIF, Princeton, NJ, 1989 pp. 106–09.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S.J., German, R.M., Martin, J.M. et al. Densification behavior of tungsten heavy alloy based on master sintering curve concept. Metall Mater Trans A 37, 2837–2848 (2006). https://doi.org/10.1007/BF02586116

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02586116

Keywords

Navigation