Skip to main content
Log in

Robust Bayesian estimators in a one-way ANOVA model

  • Published:
Test Aims and scope Submit manuscript

Summary

Motivated by the attractive features of robust priors, we develop Bayesian estimators for the parameters in a one-way ANOVA model using mixed priors, which are formed by incorporating at density into the usual conjugate priors to independently describe prior knowledge regarding the overall mean or regarding the factor effects. The effect of the independentt prior component is greatly different from that of the conjugate prior. The Bayesian estimators arising from such mixed priors are non-linear functions of the least squares estimators and adjust automatically to the value of the sum of squared errors. In this sense, they are adaptive and rather insensitive to extreme observations. The proposed estimators are clearly superior to the usual Bayesian estimators and to the traditional unbiased estimators, and may be practicable when the error terms are Cauchy distributed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angers, J. F. and Berger, J. O. (1991). Robust hierarchical Bayesian estimation of exchangeable means.Canadian J. Statist. 19, 39–56.

    MathSciNet  Google Scholar 

  • Berger, J. O. (1980). A robust generalized Bayes estimator and confidence region for a multivariate normal mean.Ann. Statist. 8, 716–761.

    MathSciNet  Google Scholar 

  • Berger, J. O. (1984). The robust Bayesian viewpoint.Studies in Bayesian Econometrics 4 (A. Zellner and J. B. Kadane, eds) Amsterdam: North-Holland, 63–115.

    Google Scholar 

  • Bian, G. (1989). Bayesian statistical analysis with independent bivariate priors for the normal location and scale parameters. Ph.D. Thesis, University of Minnesota.

  • Bian, G. and Dickey, J. M. (1995). Properties of multivariate Cauchy and poly-Cauchy distributions with Bayesian g-prior applications.Bayesian Analysis in Statistics and Econometrics: Essays in Honor of Arnold Zellner (D. A. Berry, K. M. Chaloner and J. K. Geweke, eds.), New York: Wiley. (to appear).

    Google Scholar 

  • Broemeling, L. D. (1985)Bayesian Analysis of Linear Models. New York: Marcel Dekker.

    MATH  Google Scholar 

  • Dickey, J. M. (1974). Bayesian alternatives to the F-test and least-squares estimate in the normal linear model.Studies in Bayesian Econometrics and Statistics (S. E. Fienberg and A. Zellner, eds.), Amsterdam: North-Holland, 515–554.

    Google Scholar 

  • Dreze, J. H. and Richard, J. F. (1983). Bayesian analysis of simultaneous equation system.Handbook of Econometrics 1 (Z. Glriliches and M. D. Intriligator, eds.). Amsterdam: North-Holland, 577–598.

    Google Scholar 

  • Helfand, A. E., Hills, S. E., Racine-poon, A., and Smith, A. F. M. (1990). Illustration of Bayesian inference in normal data model using Gibbs sampling.J. Amer. Statist. Assoc. 85, 972–985.

    Article  Google Scholar 

  • Jeffrey, H. (1948).Theory of Probability. 2nd edition. Oxford: University Press.

    Google Scholar 

  • O’Hagan, A. (1990). Outliers and credence for location parameter inference.J. Amer. Statist. Assoc. 85, 172–176.

    Article  MathSciNet  Google Scholar 

  • Patil, V. H. (1964). Difficulties involved in computing Behrens-Fisher densities, cumulative probabilities, and percentage points from first principles.J. Indian. Statist. Assoc. 2 and3, 110–118.

    Google Scholar 

  • Press, S. J. (1989).Bayesian Statistics: Principles, Models, and Applications. New York: Wiley.

    MATH  Google Scholar 

  • Raiffa, H., and Schlaifer, R. (1961).Applied Statistical Decision Theory. Boston: Harvard University.

    Google Scholar 

  • Ramsay, J. O. and Novick, M. R. (1980). PLU robust Bayesian decision theory: point estimation.J. Amer. Statist. Assoc. 75, 401–407.

    Article  MathSciNet  Google Scholar 

  • Rubin, H. (1977). Robust Bayesian estimation.Statistical Decision Theory and Related Topics II (S. S. Gupta and D. Moore, eds). New York: Academic Press, 351–356.

    Google Scholar 

  • Tiao, G. C. and Zellner, A. (1964). On the Bayesian estimation of multivariate regression.J. Roy. Statist. Soc. B 26, 277–285.

    MathSciNet  Google Scholar 

  • Tirney, L. and Kadane, J. B. (1986). Accurate approximations for posterior moments and marginal densities.J. Amer. Statist. Assoc. 81, 82–86.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bian, G. Robust Bayesian estimators in a one-way ANOVA model. Test 4, 115–135 (1995). https://doi.org/10.1007/BF02563106

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02563106

Keywords

Navigation