Skip to main content
Log in

The colon, anorectum, and spinal cord patient

A review of the functional alterations of the denervated hindgut

  • Current Status
  • Published:
Diseases of the Colon & Rectum

Abstract

As humans have become more mechanized, the number of persons sustaining spinal cord injuries resulting in quadriplegia or paraplegia has increased. Because colorectal function is modulated by a combination of neural, hormonal, and luminal influences, many of the normal regulatory mechanisms remain intact in patients with spinal cord injuries. Management of these patients, however, requires an understanding of altered function in the denervated hindgut. The foregut and midgut are innervated by parasympathetic fibers in the vagus and sympathetic fibers from the lower six thoracic vertebra. In contrast, the hindgut is innervated by parasympathetic fibers arising from the sacral plexus and sympathetic fibers from the lumbar spinal column. Consequently, in most spinal cord injuries, the foregut and midgut remain normally innervated whereas the hindgut looses input from cerebral and spinal cord sources. In high cord lesions this results in decreased colonic motility. In low cord injuries there is loss of inhibitory influences that normally down-regulate left colonic and rectosigmoid sphincter activity. This increased motility causes a loss of left colonic compliance and increases left colonic transit, thus leading to chronic constipation. At the same time in both high and low cord injuries, reflex activity of the anorectum is left unregulated by cerebral input. Once stimulated by distention, the rectum spontaneously evacuates its contents. Thus, fecal impaction and incontinence in these patients principally results from loss of inhibitory influences on rectosigmoid sphincter activity and on rectal reflex activity

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bedrook GM, Sedgley GI. The management of spinal injuries— past and present. Int Rehab Med 1980;2:45–61.

    Google Scholar 

  2. Michaels LS. Epidemiology of spinal cord injury. In: Vinken PJ, Bruyn GW eds. Handbook of clinical neurology. Amsterdam: North Holland Publishing Co. 1976;25:141–3.

    Google Scholar 

  3. Gore RM, Mintzer RA, Calenoff L. Gastrointestinal complications of spinal cord injury. Spine 1980;6:538–44.

    Article  Google Scholar 

  4. Ingersoll GL. Abdominal pathology in spinal cord injured persons. J Neurosurg Nursing 1985;17:343–8.

    CAS  Google Scholar 

  5. Cooke HJ. Neurobiology of the intestinal mucosa. Gastroenterology 1986;90:1057–81.

    PubMed  CAS  Google Scholar 

  6. Christensen J. Motility of the colon. In: Johnson LR ed. Physiology of the gastrointestinal tract. New York: Raven Press, 1981;445–71.

    Google Scholar 

  7. Sjovall H, Redfors S, Jodal S, Lundgren O. On the mode of action of the sympathetic fibers on intestinal fluid transport: evidence for the existence of a glucose-stimulated secretory nervous pathway in the intestinal wall. Acta Physiol Scand 1983;119:390–8

    Article  Google Scholar 

  8. Grider JR, Makhlouf GM. Colonic peristaltic reflex: identification of vasoactive intestinal peptide as mediator of descending relaxation. Am J Physiol 1986;251 (Gastrointest Liver Physiol 14):G40–45

    PubMed  CAS  Google Scholar 

  9. Gray H. Anatomy of the human body. Philadelphia: Lea & Febiger, 1973:1004–36.

    Google Scholar 

  10. Goligher JC, Hughes ES. Sensibility of the rectum and colon: its role in the maintenance of anal continence. Lancet 1951;1:543–7.

    Article  PubMed  CAS  Google Scholar 

  11. Goligher J. Surgery of the anus, rectum and colon. London: Bailliere Tindall, 1984:1–47.

    Google Scholar 

  12. Telford ED, Stopford JS. The autonomic nerve supply of the distal colon: an anatomical and clinical study. Br Med J 1934;1:572–74.

    Google Scholar 

  13. Labate JS. The surgical anatomy of the superior hypogastric plexus—“pre-sacral nerve.” Surg Gynecol Obstet 1938;67:199–211.

    Google Scholar 

  14. Localio SA, Eng K, Coppa GF. Anorectal, presacral and sacral tumors: anatomy, physiology, pathogenesis and management. Philadelphia: WB Saunders 1987:16–45.

    Google Scholar 

  15. Davis AA. The presacral nerve. Br Med J 1934;2:1–6.

    Google Scholar 

  16. Connell AM, Jones FA, Rowlands EN. Motility of the pelvic colon. IV. Abdominal pain associated with colonic hypermotility after meals. Gut 1965;6:105–12.

    PubMed  CAS  Google Scholar 

  17. Holdstock DJ, Misiewicz JJ. Factors controlling colonic motility: colonic pressures and transit after meals in patients with total gastrectomy, pernicious anaemia or duodenal ulcer. Gut 1970; 11:100–10.

    PubMed  CAS  Google Scholar 

  18. Snape WJ Jr, Matarazzo SA, Cohen S. Effect of eating and gastrointestinal hormones on human colonic myoelectrical and motor activity. Gastroenterology 1978;75:373–8.

    PubMed  CAS  Google Scholar 

  19. Wright SH, Snape WJ Jr, Battle W, Cohen S, London RL. Effect of dietary components on gastrocolonic response. Am J Physiol 1980;238 (Gastrointest Liver Physiol 1):G228-G232.

    PubMed  CAS  Google Scholar 

  20. Philips SF. Functions of the large bowel: an overview. Scand J Gastroenterol 1984;19(Suppl 93):1–12.

    Google Scholar 

  21. Snape WJ Jr, Wright SH, Cohen S, Battle WM. The gastrocolonic response: evidence for a neural mechanism—neural versus hormonal mediation. Gastroenterology 1979;77:1235–40.

    PubMed  Google Scholar 

  22. Binder HJ. New modes for regulating intestinal ion transport. Gastroenterology 1980;78:642–7.

    PubMed  CAS  Google Scholar 

  23. Binder HJ. Effect of dexamethasone on electrolyte transport in the large intestine in rat. Gastroenterology 1978;75:212–7.

    PubMed  CAS  Google Scholar 

  24. Will PC, Lebowitz, Hopper U. Induction of amiloride-sensitive sodium transport in the rat colon by mineralocorticoids. Am J Physiol 1980;238 (Renal Fluid Electrolyte Physiol 7):F261–8.

    PubMed  CAS  Google Scholar 

  25. Hirsch D, Pace P, Binder HJ, Hayslett JP. Evidence that aldosterone influences transport in target tissues by dissimilar mechanisms. Am J Physiol 1985;248 (Renal Fluid Electrolyte Physiol 17):F507–12.

    PubMed  CAS  Google Scholar 

  26. Halevy J, Budinger ME, Hayslett JP. Role of aldosterone in the regulation of sodium and chloride transport in the distal colon of sodium-depleted rats. Gastroenterology 1986;91:1227–33.

    PubMed  CAS  Google Scholar 

  27. Wu ZC, O'Dorisio TM, Cataland S, Mekhjian HS, Gaginella TS. Effects of pancreatic polypeptide and vasoactive intestinal polypeptide on rat ileal and colonic water and electrolyte transport in vivo. Dig Dis Sci 1979;24:625–30.

    Article  PubMed  CAS  Google Scholar 

  28. Dharmsathaphorn K, Racusen L, Dobbins JW. Effect of somatostatin on ion transport in the rat colon. J Clin Invest 1980;66: 813–20.

    PubMed  CAS  Google Scholar 

  29. Smith PL, McCabe RD. Potassium secretion by rabbit descending colon: effects of adrenergic stimuli. Am J Physiol 1986;250: (Gastrointest Liver Physiol 13):G432–9.

    PubMed  CAS  Google Scholar 

  30. Ryan JP. Effect of pregnancy on intestinal transit: comparison of results using radioactive and non-radioactive test meals. Life Sci 1982;31:2635–40.

    Article  PubMed  CAS  Google Scholar 

  31. Ryan JP, Bhojwani A. Colonic transit in rats: effect of ovariectomy, sex steriod hormones, and pregnancy. Am J Physiol 1986;251 (Gastrointest Liver Physiol 14):G36–50.

    Google Scholar 

  32. Johnson LR. New aspects of the trophic action of gastrointestinal hormones. Gastroenterology 1977;72:788–92.

    PubMed  CAS  Google Scholar 

  33. Weisbrodt NW. Gastrointestinal motility. In: Guyton AC, Jacobson ED, Shanbour LL (eds) Gastrointestinal physiology: Baltimore: University Park Press, 1974.

    Google Scholar 

  34. Weisbrodt NW. Gastrointestinal motility. In: Guyton AC, Jacobson ED, Shanbour LL, eds. Gastrointestinal physiology. Baltimore: University Park Press, 1974.

    Google Scholar 

  35. Dinoso VP, Meshkinpour H, Lorber SH, Gutierrez JG, Chevy WY, Motor responses of the sigmoid colon and rectum to exogenous cholecystokinin and secretion. Gastroenterology 1973;65:438–44.

    PubMed  Google Scholar 

  36. Rennie JA, Christofides ND, Bloom SR, Johnson AG. Stimulation of human colonic activity by motilin. Gut 1979;20:912–6.

    Google Scholar 

  37. Jenssen TG, Burhol PG, Jorde R. Release of gastrointestinal regulatory peptides after soap enema. Scand J Gastroenterol 1985;20: 762–6.

    PubMed  CAS  Google Scholar 

  38. Lundberg JM, Tatemoto K et al. Localization of peptide YY (PYY) in gastrointestinal endocrine cells and effects on intestinal blood flow and motility. Proc Natl Acad Sci 1982;79:4471–5.

    Article  PubMed  CAS  Google Scholar 

  39. Meihoff WE, Kern F Jr. Bile salt malabsorption in regional ileitis, ileal resection, and mannitol-induced diarrhea. J Clin Invest 1968;49:261–7.

    Google Scholar 

  40. Ammon HV, Phillips SF. Inhibition of colonic water and electrolyte absorption by fatty acids in man. Gastroenterology 1973;65: 744–9.

    PubMed  CAS  Google Scholar 

  41. Bright-Asare P, Binder HJ. Stimulation of colonic secretion of water and electrolytes by hydroxy fatty acids. Gastroenterology 1973;64:81–8.

    PubMed  CAS  Google Scholar 

  42. Hoffmann AF, Poley JR. Role of bile acid malabsorption in pathogenesis of diarrhea and steatorrhea in patients with ileal resection. I. Response to cholestyramine or replacement of dietary long chain triglyceride by medium chain triglyceride. Gastroenterology 1972;62:918–34.

    Google Scholar 

  43. Conley D, Coyne M, Chung A, Bonorris G, Schoenfield L. Propranolol inhibits adenylate cyclase and secretion stimulated by deoxycholic acid in the rabbit colon. Gastroenterology 1976;71:72–5.

    PubMed  CAS  Google Scholar 

  44. Debongnie JC, Phillips SF. Capacity of the human colon to absorb fluid. Gastroenterology 1978;74:698–703.

    PubMed  CAS  Google Scholar 

  45. Binder HJ, Filburn C, Volpe BT. Bile salt alteration of colonic electrolyte transport: role of cyclic adenosine monophosphate. Gastroenterology 1975;68:503–8.

    PubMed  CAS  Google Scholar 

  46. Bustos-Fernandez L, Gonzalez E, de Paolo IL, Celener D, de Furuya KO. Organic anions induce colonic secretion. Am J Dig Dis 1976;21:329–32.

    Article  PubMed  CAS  Google Scholar 

  47. Argenzio RA, Miller N, Engelhardt W von. Effect of volatile fatty acids on water and ion absorption from the goat colon. Am J Physiol 1975;229:997–1002.

    PubMed  CAS  Google Scholar 

  48. Argenzio RA, Southworth M, Lowe JE, Stevens CE. Interrelationship of Na, HCO3, and volatile fatty acid transport by equine large intestine. Am J Physiol 1977;233:E469–78.

    PubMed  CAS  Google Scholar 

  49. Goligher JC, Leakcock AG, Brossy JJ. The surgical anatomy of the anal canal. Br J Surg 1955;43:51–6.

    PubMed  CAS  Google Scholar 

  50. Connell AM. The motility of the pelvic colon: motility in normals and in patients with asymptomatic duodenal ulcer. Gut 1961;2: 175–86.

    PubMed  CAS  Google Scholar 

  51. Ballantyne GH. Rectosigmoid sphincter of O'Beirne. Dis Colon Rectum 1986;29:525–31.

    PubMed  CAS  Google Scholar 

  52. Parks AG. Anorectal incontinence. Proc R Soc Med 1975;68:681–90.

    PubMed  CAS  Google Scholar 

  53. Denny-Brown D, Robertson G. An investigation of the nervous control of defecation. Brain 1935;58:256–310.

    Article  Google Scholar 

  54. Schuster MM. The riddle of the sphincters. Gastroenterology 1975;69:249–62.

    PubMed  CAS  Google Scholar 

  55. Duthie HL. Dynamics of the rectum and anus. Clin Gastroenterol 1975;4:467–71.

    PubMed  CAS  Google Scholar 

  56. Meshkinpour H, Harmon D, Thompson R, Yu J. Effects of thoracic spinal cord transection on colonic motor activity in rats. Paraplegia 1985;23:272–6.

    PubMed  CAS  Google Scholar 

  57. Connell AM, Frankel H, Guttman L. The motility of the pelvic colon following complete lesions of the spinal cord. Paraplegia 1963;1:98–115.

    PubMed  CAS  Google Scholar 

  58. Glick ME, Meshkinpour H, Haldeman S, Hoehler F, Fowney N, Bradley WE. Colonic dysfunction in patients with thoracic spinal cord injury. Gastroenterology 1984;86:287–94.

    PubMed  CAS  Google Scholar 

  59. Meshkinpour H, Nowroozi F, Glick ME. Colonic compliance in patients with spinal cord injury. Arch Phys Med Rehabil 1983;64:111–2.

    PubMed  CAS  Google Scholar 

  60. Freckner B. Function of the anal sphincters in spinal man. Gut 1975;16:638–44.

    Google Scholar 

  61. Fast A. Reflex sweating in patients with spinal cord injury: a review. Arch Phys Med Rehabil 1977;58:435–7.

    PubMed  CAS  Google Scholar 

  62. Menardo G, Bausano G, Corazziari E, et al. Large-bowel transit in paraplegic patients. Dis Colon Rectum 1987;30:924–8.

    Article  PubMed  CAS  Google Scholar 

  63. Gowers WR. The automatic action of the sphincter ani. Proc Roy Soc London 1877;26:77–84.

    Google Scholar 

  64. Schuster MM, Hendrix TR, Mendeloff AI. The internal anal sphincter response: manometric studies on its normal physiology, neural pathways, and alterations in bowel disorders. J Clin Invest 1963;42:196–207.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Longo, W.E., Ballantyne, G.H. & Modlin, I.M. The colon, anorectum, and spinal cord patient. Dis Colon Rectum 32, 261–267 (1989). https://doi.org/10.1007/BF02554543

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02554543

Key words

Navigation