Skip to main content
Log in

Relativistic models for nuclear structure calculations: Comparative study of mean-field and Hartree-Fock approximation for superheavy nuclei

  • Part III. Invited Papers Dedicated to Lawrence Biedenharn
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The relevance of exchange effects for the stability of superheavy nuclei is examined within a linear QHD-II model by comparing Hartree-Fock with meanfield results. To allow a scan of the complete superheavy regime the recently developed local density approximation (LDA) for the exchange potential is employed for the Hartree-Fock level calculations. It turns out that, while many nuclear properties obtained with the LDA approach differ significantly from the corresponding mean-field results, the predictions of the two methods for shell closures are very similar. Furthermore, a comparison with a nonlinear variant of QHD-II shows that many nuclear properties obtained with the LDA in the framework of linear QHD-II are somewhere in-between the corresponding linear and nonlinear mean-field results. This indicates that the LDA exchange partially includes nonlinear contributions, which supports the interpretation of the meson self-coupling as a parametrization of many-body effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Mosel and W. Greiner,Z. Phys. 222, 261 (1969).

    Article  Google Scholar 

  2. S. G. Nilsson, C. F. Tsang, A. Sobiczewski, Z. Szymanski, S. Wycech, C. Gustafson, I.-L. Lamm, P. Möller, and B. Nilsson,Nucl. Phys. A 131, 1 (1969).

    Article  ADS  Google Scholar 

  3. K. Kumar,Superheavy Elements (Adam Hilger, Bristol, 1989).

    Google Scholar 

  4. S. Hofmann, V. Ninov, F. P. Hessberger, P. Armbruster, H. Folger, G. Münzenberg, H. J. Schött, A. G. Popeko, A. V. Yeremin, A. N. Andreyev, S. Saro, R. Janik, and M. Leino,Z. Phys. A 350, 277 (1995),Z. Phys. A 350, 281 (1995).

    Article  Google Scholar 

  5. S. Hoffmann, V. Ninov, F. P. Hessberger, P. Armbruster, H., Folger, G. Münzenberg, H. J. Schött, A. G. Popeko, A. V. Yeremin, S. Saro, R. Janik, and M. Leino,Z. Phys. A 354, 229 (1996).

    Article  Google Scholar 

  6. Yu. Lazarev, Yu. V. Lobanov, Yu. Ts. Oganessian, V. K. Utyonkov, F. Sh. Abdullin, A. N. Polyakov, J. Rigol, I. V. Shirokovsky, S. Iliev, V. G. Subbotin, A. M. Sukhov, G. V. Buklanov, B. N. Gikal, V. B. Kutner, A. N. Mezentsev, K. Subotic, J. F. Wild, R. W. Lougheed, and K. J. Moody,Phys. Rev. C 54 620 (1996).

    Article  ADS  Google Scholar 

  7. S. Ćwiok, J. Dobaczewski, P.-H. Heenen, P. Magierski, and W. Nazarewicz,Nucl. Phys. A 611, 211 (1996).

    Article  ADS  Google Scholar 

  8. K. Rutz, M. Bender, T. Bürvenich, T. Schilling, P.-G. Reinhard, J. A. Maruhn, and W. Greiner,Phys. Rev. C 56, 238 (1997).

    Article  ADS  Google Scholar 

  9. G. A. Lalazissis, M. M. Sharma, P. Ring, and Y. K. Gambhir,Nucl. Phys. A 608, 202 (1997).

    Article  ADS  Google Scholar 

  10. Z. Patyk and A. Sobiczewski,Nucl. Phys. A 533, 132 (1991).

    Article  ADS  Google Scholar 

  11. P. Möller and J. R. Nix:Nucl. Phys. A 549, 84 (1992);J. Phys. G 20, 1681 (1994).

    Article  ADS  Google Scholar 

  12. Y. K. Gambhir, P. Ring, and A. Thimet,Ann. Phys. (N.Y.) 198, 132 (1990).

    Article  ADS  Google Scholar 

  13. B. D. Serot, and J. D. Walecka, inAdvances in Nuclear Physics, J. W. Negele and E. Vogt, eds. (Plenum, New York, 1986), Vol. 16.

    Google Scholar 

  14. B. D. Serot,Rep. Prog. Phys. 55, 1855 (1992).

    Article  ADS  Google Scholar 

  15. H. F. Boersma,Phys. Rev. C 48, 472 (1993).

    Article  ADS  Google Scholar 

  16. J.-K. Zhang, Y. Jin, and D. S. Onley,Phys. Rev C 48, 2697 (1993).

    Article  ADS  Google Scholar 

  17. R. N. Schmid, E. Engel, and R. M. Dreizler,Phys. Rev. C 52, 164 (1995).

    Article  ADS  Google Scholar 

  18. R. N. Schmid, E. Engl, and R. M. Dreizler,Phys. Rev. C 52, 2804 (1995).

    Article  ADS  Google Scholar 

  19. C. Speicher, R. M. Dreizler, and E. Engel,Ann. Phys. (N. Y.) 213, 312 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Bouyssy, J.-F. Mathiot, Nguyen Van Giai, and S. Marcos,Phys. Rev. C 36, 380 (1987).

    Article  ADS  Google Scholar 

  21. H. F. Boersma and R. Malfliet,Phys. Rev. C 49, 233 (1994);Phys. Rev. C 49, 1495 (1994).

    Article  ADS  Google Scholar 

  22. M. Rufa, P.-G. Reinhard, J. A. Maruhn, W. Greiner, and M. R. Strayer,Phys. Rev. C 38, 390 (1988).

    Article  ADS  Google Scholar 

  23. R. O. Jones and O. Gunnarsson,Rev. Mod. Phys. 61, 689 (1989).

    Article  ADS  Google Scholar 

  24. S. A. Chin,Ann. Phys. (N. Y.) 108, 301 (1977).

    Article  ADS  Google Scholar 

  25. Unfortunately, this inversion leads to numerical difficulties in the asymptotic regime with its exponentially decaying densities. To deal with this problem one resorts to a perturbative evaluation ofe INM x p , ρ n , ρ s ), in which the difference between ρ s and\(\tilde \rho _s \) is taken into account to first order,\(e_x^{INM} (\rho _s ) \approx \tilde e_x^{INM} (M^* ) + \frac{{d\tilde e_x^{INM} }}{{dM^* }}(M^* )\left( {\frac{{d\tilde \rho _s }}{{dM^* }}(M^* )} \right)^{ - 1} (\rho _s - \tilde \rho _s )\) withM * (x) taken from (14) (for fixed ρ p and ρ n , which are here suppressed for brevity).

  26. M. Prakash, P. J. Ellis, E. K. Heide, S. Rudaz,Nucl. Phys. A 575, 583 (1994).

    Article  ADS  Google Scholar 

  27. W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou, and M. L. Cohen,Phys. Rev. Lett. 52, 2141 (1984).

    Article  ADS  Google Scholar 

  28. H. de Vries, C. W. de Jager, and C. de Vries,Atomic and Nuclear Data Tables 36, 495 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, R.N., Engel, E. & Dreizler, R.M. Relativistic models for nuclear structure calculations: Comparative study of mean-field and Hartree-Fock approximation for superheavy nuclei. Found Phys 27, 1257–1274 (1997). https://doi.org/10.1007/BF02551527

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551527

Keywords

Navigation