Skip to main content
Log in

Analysis of blockwise shrinkage wavelet estimates via lower bounds for no-signal setting

  • Wavelet
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

A blockwise shrinkage is a popular procedure of adaptation that has allowed the statisticians to establish an impressive bouquet of asymptotic mathematical results and develop softwares for solving practical problems. Traditionally risks of the estimates are studied via upper bounds that imply sufficient conditions for a blockwise shrinkage procedure to be minimax. This article suggests to analyze the estimates via exact (non-asymptotic) lower bounds established for a no-signal setting. The approach complements the familiar minimax, Bayesian and numerical analysis, it allows to find necessary conditions for a procedure to attain desired rates, and it sheds a new light on popular choices of blocks and thresholds recommended in the literature. Mathematical results are complemented by a numerical study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramovich, F., Besbeas, P. and Sapatinas, T. (2002). Empirical Bayes approach to block wavelet function estimation,Computational Statistics and Data Analysis,39, 435–451.

    Article  MathSciNet  Google Scholar 

  • Brown, L. D., Low, M. G. and Zhao, L. H. (1997). Superefficiency in nonparametric function estimation,The Annals of Statistics,25, 2607–2625.

    Article  MathSciNet  Google Scholar 

  • Cai, T. (1999). Adaptive wavelet estimation: a block thresholding and oracle inequality approach,The Annals of Statistics,27, 898–924.

    Article  MathSciNet  Google Scholar 

  • Cai, T. (2002). On block thresholding in wavelet regression: Adaptivity, block size, and threshold level,Statistical Sinica,12, 1321–1273.

    Google Scholar 

  • Cai, T. and Silverman, B. (2000). Incorporating information on neighboring coefficients into wavelet estimation,Sankhyā Series B,63, 127–148.

    MathSciNet  Google Scholar 

  • Cai, T., Low, M. and Zhao, L. (2000) Sharp adaptive estimation by a blockwise method, Tech. Report, University of Pennsylvania, Philadelphia.

    Google Scholar 

  • Cavalier, L. and Tsybakov, A. (2001). Penalized blockwise Stein’s method, monotone oracles and sharp adaptive estimation,Mathematical Methods of Statistics,10, 247–282.

    MathSciNet  Google Scholar 

  • Chiken, E. (2003). Block thresholding and wavelet estimation for nonequispaced samples.Journal of Statistical Planning and Inference,16, 113–129.

    Article  Google Scholar 

  • DeCanditiis, D. and Vidakovic, B. (2004). Wavelet Bayesian block shrinkage via mixture of normal-inverse gamma priors,Journal of Computational and Graphical Statistics,12 (to be published).

  • Delyon, B. and Juditsky, A. (1996). On minimax wavelet estimators,Journal of Applied and Computational Harmonic Analysis,3, 215–228.

    Article  MathSciNet  Google Scholar 

  • Donoho, D. L. (1995). De-Noising by soft thresholding,IEEE Transactions of Information Theory,41, 613–627.

    Article  MathSciNet  Google Scholar 

  • Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage,Biometrika,81, 425–455.

    Article  MathSciNet  Google Scholar 

  • Donoho, D. L. and Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage,Journal of American Statistical Association,90, 1200–1224.

    Article  MathSciNet  Google Scholar 

  • Downie, T. R. and Silverman, B. M. (1998). The discrete multiple discrete transform and threshold methods,IEEE Transactions on Signal Processing,46, 2558–2561.

    Article  Google Scholar 

  • Efromovich, S. (1985). Nonparametric estimation of a density with unknown smoothness,Theory of Probability and Applications,30, 557–568.

    Article  Google Scholar 

  • Efromovich, S. (1986). Adaptive algorithm for nonparametric regression,Procedures of Second IFAC Symposium on Stochastic Control, 112–114, Science, Vilnuis.

    Google Scholar 

  • Efromovich, S. (1999)Nonparametric Curve Estimation: Methods, Theory and Applications, Springer, New York.

    MATH  Google Scholar 

  • Efromovich, S. (2000). Can adaptive estimators for Fourier series be of interest to wavelets?Bernoulli,6, 699–709.

    Article  MathSciNet  Google Scholar 

  • Efromovich, S. (2001). Multiwavelets and signal denoising,Sankhyā Series B,23, 367–393.

    MathSciNet  Google Scholar 

  • Efromovich, S. and Pinsker, M. (1984). A learning algorithm for nonparametric filtering,Automation and Remote Control,24, 1434–1440.

    Google Scholar 

  • Efromovich, S. and Pinsker, M. (1986). Adaptive algorithm of minimax nonparametric estimating spectral density,Problems of Information Transmission,22, 62–76.

    Google Scholar 

  • Efromovich, S. and Pinsker, M. (1996). Sharp-optimal and adaptive estimation for heteroscedastic nonparametric regression,Statistica Sinica,6, 925–945.

    MathSciNet  Google Scholar 

  • Hall, P., Kerkyacharian, G. and Picard, D. (1998). Block threshold rules for curve estimation using kernel and wavelet methods,The Annals of Statistics,26, 922–942.

    Article  MathSciNet  Google Scholar 

  • Hall, P., Kerkyacharian, G. and Picard, D. (1999). On the minimax optimality of block thresholded wavelet estimators,Statistica Sinica,9, 33–50.

    MathSciNet  Google Scholar 

  • Härdle, W., Kerkyacharian, G., Picard, D. and Tsybakov, A. (1998).Wavelets, Approximation, and Statistical Applications, Springer, New York.

    MATH  Google Scholar 

  • Johnstone, I. (1998).Function Estimation in Gaussian Noise. Sequence Models, Draft of Monograph, University of Stanford, California.

    Google Scholar 

  • Juditsky, A. (1997). Wavelet estimators: Adapting to unknown smoothness,Mathematical Methods of Statistics,6, 1–25.

    MathSciNet  Google Scholar 

  • Lehmann, E. L. and Casella, G. (1998).Theory of Point Estimation, 2nd ed., Springer, New York.

    MATH  Google Scholar 

  • Mallat, S. (1999).A Wavelet Tour of Signal Processing, University Press, New York.

    MATH  Google Scholar 

  • Nemirovski, A. (2000).Topics in Non-Parametric Statistics, Lecture Notes in Mathematics,1738, Springer, New York.

    Google Scholar 

  • Robbins, H. (1955). A remark on Stirling’s formula,American Mathematics Monthly,62, 26–29.

    Article  MathSciNet  Google Scholar 

  • Tsybakov, A. (2002). Discussion on random rates in anisotropic regression,The Annals of Statistics,30, 379–385.

    MathSciNet  Google Scholar 

  • Vidakovic, B. (1999).Statistical Modeling by Wavelets, Springer, New York.

    MATH  Google Scholar 

  • Wahba, G. (1990).Spline Models for Observational Data, SIAM, Philadelphia.

    MATH  Google Scholar 

  • Zhang, C.-H. (2002). Minimax compound estimation, Tech. Report, Rutgers University, New Jersey.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NSF Grants DMS-9971051 and DMS-0243606.

About this article

Cite this article

Efromovich, S. Analysis of blockwise shrinkage wavelet estimates via lower bounds for no-signal setting. Ann Inst Stat Math 56, 205–223 (2004). https://doi.org/10.1007/BF02530542

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02530542

Key words and phrases

Navigation