Skip to main content
Log in

Nonparametric adaptive detection in fading channels based on sequential Monte Carlo and Bayesian model averaging

  • Special Section on New Trends in Statistical Information Processing
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Recently, a Bayesian receiver for blind detection in fading channels has been proposed by Chen, Wang and Liu (200,IEEE Trans. Inform. Theory,46, 2079–2094), based on the sequential Monte Carlo methodology. That work is built on a parametric modelling of the fading process in the form of a state-space model, and assumes the knowledge of the second-order statistics of the fading channel. In this paper, we develop a nonparametric approach to the problem of blind detection in fading channels, without assuming any knowledge of the channel statistics. The basic idea is to decompose the fading process using a wavelet basis, and to use the sequential Monte Carlo technique to track both the wavelet coefficients and the transmitted symbols. Moreover, the algorithm is adaptive to time varying speed/smoothness in the fading process and the uncertainty on the number of wavelet coefficients (shrinkage order) needed. Simulation results are provided to demonstrate the excellent performance of the proposed blind adaptive receivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrieu, C., de Freitas, J. F. G. and Doucet, A. (1999). Sequential MCMC for Bayesian model selection,Proceedings of IEEE Higher Order Statistics Workshop, Israel. (Available http://citeseer.nj.nec. com/andrieu99sequential.html)

  • Andrieu, C., de Freitas, J. F. G. and Doucet, A. (2000). Sequential Bayesian estimation and model selection for dynamic kernel machines, Tech. Report, TR 341, Cambridge University. (Available http://citeseer.nj.nec.com/andrieu00sequential.html)

  • Chen, R. and Liu, J. S. (2000). Mixture Kalman filters,J. Roy. Statist. Soc. Ser. B,62, 493–509.

    Article  MATH  Google Scholar 

  • Chen, R., Wang, X. and Liu, J. S. (2000). Adaptive joint detection and decoding in flat-fading channels via mixture Kalman filtering,IEEE Trans. Inform. Theory,46, 2079–2094.

    Article  MathSciNet  MATH  Google Scholar 

  • Chipman, H., Kolaczyk, E. and McCulloch, R. (1997). Adaptive Bayesian wavelet shrinkage,J. Amer. Statist. Assoc.,92, 1413–1421.

    Article  MATH  Google Scholar 

  • Clyde, M. and George, E. (2000). Flexible empirical Bayes estimation for wavelets,J. Roy. Statist. Soc. Ser. B,62, 681–698.

    Article  MathSciNet  MATH  Google Scholar 

  • Collings, I. B. and Moore, J. B. (1994). An HMM approach to adaptive demodulation of QAM signals in fading channels,International Journal of Adaptive Control and Signal Processing,8, 457–474.

    MathSciNet  MATH  Google Scholar 

  • Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets,Comm. Pure Appl. Math.,41, 425–455.

    Google Scholar 

  • Daubechies, I. (1992).Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, Philadelphia.

    MATH  Google Scholar 

  • Donoho, D. and Johnstone, I. (1994). Multiple shrinkage and subset selection in wavelets,Biometrica,81, 425–455.

    Article  MathSciNet  MATH  Google Scholar 

  • Doucet, A., Godsill, S. and Andrieu, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering,Statist. Comput.,10, 197–208.

    Article  Google Scholar 

  • Doucet, A., de Freitas, J. F. G. and Gordon, N. (2001).Sequential Monte Carlo in Practice, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Georghiades, C. N. and Han, J. C. (1997). Sequence estimation in the presence of random parameters via the EM algorithm,IEEE Trans. Commun.,COM-45, 300–308.

    Article  Google Scholar 

  • George, E. and McCulloch, R. (1993). Variable selection via Gibbs sampling,J. Amer. Statist. Assoc.,88, 881–889.

    Article  Google Scholar 

  • Guo, D., Wang, X. and Chen, R. (2002). Wavelet-based sequential Monte Carlo blind receivers in fading channels with unknown channel statistics,IEEE International Conference in Communications (ICC 2002), New York.

  • Haeb, R. and Meyr, H. (1989). A systematic approach to carrier recovery and detection of digitally phase modulated signals on fading channels,IEEE Trans. Commun.,37, 748–754.

    Article  Google Scholar 

  • Hoeting, A. J., Madigan, D., Raftery, A. E. and Volinsky, C. T. (1999). Bayesian model averaging: A tutorial,Statist. Sci.,14, 382–417.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, J. S. (2001).Monte Carlo Strategies in Scientific Computing, Springer, New York.

    MATH  Google Scholar 

  • Liu, J. S. and Chen, R. (1995). Blind deconvolution via sequential imputations,J. Amer. Statist. Assoc.,90, 567–576.

    Article  MATH  Google Scholar 

  • Liu, J. S. and Chen, R. (1998). Sequential Monte Carlo methods for dynamic systems,J. Amer. Statist. Assoc.,93, 1032–1044.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, J. and West, M. (2001). Combined parameter and state stimation in simulation-based filtering,Sequential Monte Carlo Methods in Practice (eds. A. Doucet, N. de Freitas and N. Gordon), 197–217, Springer, New York.

    Google Scholar 

  • Lodge, J. H. and Moher, M. L. (1990). Maximum likelihood sequence estimation of CPM signals transmitted over Rayleigh flat-fading channels,IEEE Trans. Commun.,38, 787–794.

    Article  Google Scholar 

  • Madigan, D. and Raftery, A. E. (1994). Model selection and accounting for model uncertainty in graphical models using Occam’s window,J. Amer. Statist. Assoc.,89, 1535–1546.

    Article  MATH  Google Scholar 

  • Madigan, D. and York, J. (1995). Bayesian graphical models for discrete data,Internat. Statist. Rev.,63, 215–232.

    Article  MATH  Google Scholar 

  • Martone, M. (2000). Wavelet-based separating kernels for array processing of cellular DS/CDMA signals in fast fading,IEEE Trans. Commun.,48, 979–995.

    Article  Google Scholar 

  • Proakis, J. G. (1995).Digital Communications, 3rd ed., McGraw-Hill, New York.

    Google Scholar 

  • Raftery, A. E., Madigan, D. and Hoeting, J. (1997). Bayesian model averaging for linear regression models,J. Amer. Statist. Assoc.,92, 179–191.

    Article  MathSciNet  MATH  Google Scholar 

  • Volinsky, C. T., Madigan, D., Raftery, A. E. and Kronmal, R. A. (1997). Bayesian model averaging in proportional hazard models: Assessing the risk of a stroke,J. Roy. Statist. Soc. Ser. C,46, 433–448.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by the U.S. National Science Foundation (NSF) under grants CCR-9875314, CCR-9980599, DMS-9982846, DMS-0073651 and DMS-0073601.

About this article

Cite this article

Guo, D., Wang, X. & Chen, R. Nonparametric adaptive detection in fading channels based on sequential Monte Carlo and Bayesian model averaging. Ann Inst Stat Math 55, 423–436 (2003). https://doi.org/10.1007/BF02530509

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02530509

Key words and phrases

Navigation