Skip to main content
Log in

Parameter estimation in general state-space models using particle methods

  • Special Section on New Trends in Statistical Information Processing
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Particle filtering techniques are a set of powerful and versatile simulation-based methods to perform optimal state estimation in nonlinear non-Gaussian state-space models. If the model includes fixed parameters, a standard technique to perform parameter estimation consists of extending the state with the parameter to transform the problem into an optimal filtering problem. However, this approach requires the use of special particle filtering techniques which suffer from several drawbacks. We consider here an alternative approach combining particle filtering and gradient algorithms to perform batch and recursive maximum likelihood parameter estimation. An original particle method is presented to implement these approaches and their efficiency is assessed through simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrieu, C., De Freitas, J. F. G. and Doucet, A. (1999). Sequential MCMC for Bayesian model selection,Proceedings of the IEEE Workshop on Higher Order Statistics, 130–134.

  • Benveniste, A., Métivier, M. and Priouret, P. (1990).Adaptive Algorithms and Stochastic Approximation, Springer, New York.

    Google Scholar 

  • Cérou, F., LeGland, F. and Newton, N. J. (2001). Stochastic particle methods for linear tangent equations,Optimal Control and PDE’s-Innovations and Applications (eds. J. Menaldi, E. Rofman and A. Sulem), 231–240, IOS Press, Amsterdam.

    Google Scholar 

  • Doucet, A., Godsill, S. J. and Andrieu, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering,Statist. Comput.,10, 197–208.

    Article  Google Scholar 

  • Doucet, A., de Freitas, J. F. G. and Gordon, N. J. (eds.) (2001).Sequential Monte Carlo Methods in Practice, Springer, New York.

    MATH  Google Scholar 

  • Durbin, J. and Koopman, S. J. (2000). Time series analysis of non-Gaussian observations based on state space models from both classical and Bayesian perspectives (with discussion),J. Roy. Statist. Soc. Ser. B,62, 3–56.

    Article  MathSciNet  Google Scholar 

  • Gilks, W. R. and Berzuini, C. (2001). Following a moving target—Monte Carlo inference for dynamic Bayesian models,J. Roy. Statist. Soc. Ser. B,63, 127–146.

    Article  MathSciNet  Google Scholar 

  • Gordon, N. J., Salmond, D. J. and Smith, A. F. M. (1993). Novel approach to nonlinear non-Gaussian Bayesian state estimation,IEE Proceedings F,140, 107–113.

    Google Scholar 

  • Hayrvey, A. C., Ruiz, E. and Shephard, N. (1994). Multivariate stochastic variance models,Rev. Econom. Stud.,61, 247–264.

    Article  Google Scholar 

  • Higuchi, T. (1997). Monte Carlo filter using the genetic algorithm operators,J. Statist. Comput. Simulation,59, 1–23.

    MathSciNet  Google Scholar 

  • Higuchi, T. (2001). Evolutionary time series model with parallel computing,Proceedings of the 3rd Japan-US Seminar on Statistical Time Series Analysis, 183–190.

  • Iba, Y. (2001). Population Monte Carlo algorithms,Transactions of the Japanese Society for Artificial Intelligence,16, 279–286.

    Article  Google Scholar 

  • Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space models,J. Comput. Graph. Statist.,5, 1–25.

    Article  MathSciNet  Google Scholar 

  • Kitagawa, G. (1998). A self-organizing state-space model,J. Amer. Statist. Assoc.,93, 1203–1215.

    Article  Google Scholar 

  • Kitagawa, G. and Gersch, W. (1996).Smoothness Priors Analysis of Time Series, Lecture Notes in Statist., Vol. 116, Springer, New York.

    MATH  Google Scholar 

  • LeGland, F. and Mevel, L. (1997). Recursive identification in hidden Markov models,Proceedings of 36th IEEE Conference on Decision and Control, 3468–3473.

  • Liu, J. S. and Chen, R. (1998). Sequential Monte Carlo methods for dynamic systems,J. Amer. Statist. Assoc.,93, 1032–1043.

    Article  MathSciNet  Google Scholar 

  • Liu, J. and West, M. (2001). Combined parameter and state estimation in simulation-based filtering,Sequential Monte Carlo Methods in Practice (eds. A. Doucet, J. F. G. de Freitas and N. J. Gordon), 197–223, Springer, New York.

    Google Scholar 

  • Ljung, L. and Söderström, T. (1987).Theory and Practice of Recursive Identification, MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Pitt, M. K. and Shephard, N. (1999). Filtering via simulation: Auxiliary particle filter,J. Amer. Statist. Assoc.,94, 590–599.

    Article  MathSciNet  Google Scholar 

  • Tadić, V. B. (2000). Asymptotic analysis of stochastic approximation algorithms under violated Kushner-Clark conditions,Proceedings of 39th IEEE Conference on Decision and Control, 2875–2880.

  • Tadić, V. B. and Doucet, A. (2002). Exponential forgetting and geometric ergodicity in state space models,Proceedings of 41th IEEE Conference on Decision and Control, 2231–2235.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Doucet, A., Tadić, V.B. Parameter estimation in general state-space models using particle methods. Ann Inst Stat Math 55, 409–422 (2003). https://doi.org/10.1007/BF02530508

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02530508

Key words and phrases

Navigation