Skip to main content
Log in

L 1 linear interpolator for missing values in time series

  • Interpolation
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We propose a minimum mean absolute error linear interpolator (MMAELI), based on theL 1 approach. A linear functional of the observed time series due to non-normal innovations is derived. The solution equation for the coefficients of this linear functional is established in terms of the innovation series. It is found that information implied in the innovation series is useful for the interpolation of missing values. The MMAELIs of the AR(1) model with innovations following mixed normal andt distributions are studied in detail. The MMAELI also approximates the minimum mean squared error linear interpolator (MMSELI) well in mean squared error but outperforms the MMSELI in mean absolute error. An application to a real series is presented. Extensions to the general ARMA model and other time series models are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, B. (1981). Missing observations in time series,Comm. Statist. A. Theory Methods,10, 1643–1653.

    MathSciNet  Google Scholar 

  • Beveridge, S. (1992). Least squares estimation of missing values in time series,Comm. Statist. Theory Methods,21, 3479–3496.

    MathSciNet  Google Scholar 

  • Brubacker, S. R. and Wilson, G. T. (1976). Interpolating time series with application to the estimation of holiday effects on electricity demand,J. Roy. Statist. Soc. Ser. C,25, 107–116.

    Google Scholar 

  • Dagum, E. B., Cholette, P. A. and Chen, Z. G. (1998). A unified view of signal extraction, benchmarking, interpolation and extrapolation of time series,International Statistical Review,66, 245–269.

    Google Scholar 

  • Damsleth, E. (1980). Interpolating missing values in a time series,Scand. J. Statist.,7, 33–39.

    MathSciNet  Google Scholar 

  • Dunsmuir, W. and Robinson, P. M. (1981). Estimation of time series models in the presence of missing data,J. Amer. Statist. Assoc.,76, 560–568.

    Article  Google Scholar 

  • Ferreiro, O. (1987). Methodologies for the estimation of missing observations in time series,Statist. Probab. Lett.,5, 65–69.

    Article  MathSciNet  Google Scholar 

  • Gómez, V. and Maravall, D. (1994). Estimation, prediction, and interpolation for nonstationary series with Kalman filter,J. Amer. Statist. Assoc.,89, 611–624.

    Article  MathSciNet  Google Scholar 

  • Gómez, V., Maravall, A. and Pena, D. (1999). Missing observations in ARIMA models: Skipping approach versus additive outlier approach,J. Econometrics,88, 341–363.

    Article  MathSciNet  Google Scholar 

  • Grenander, U. and Rosenblatt, M. (1957).Statistical Analysis of Stationary Time Series, Wiley, New York.

    MATH  Google Scholar 

  • Harvey, A. C. and Pierse, R. G. (1984). Estimating missing observations in economic time series,J. Amer. Statist. Assoc.,79, 125–131.

    Article  Google Scholar 

  • Jones, R. H. (1980). Maximum likelihood fitting of ARMA models to time series with missing observations,Technometrics,22, 389–395.

    Article  MathSciNet  Google Scholar 

  • Kohn, R. and Ansley, C. F. (1986). Estimation, prediction, and interpolation for ARIMA models with missing data,J. Amer. Statist. Assoc.,81, 751–761.

    Article  MathSciNet  Google Scholar 

  • Ljung, G. M. (1982). The likelihood function for a stationary Gaussian autoregressive-moving average process with missing observations,Biometrika,69, 265–268.

    Article  MathSciNet  Google Scholar 

  • Ljung, G. M. (1989). A note on the estimation of missing values in time series,Comm. Statist. Simulation comput.,18, 459–465.

    MathSciNet  Google Scholar 

  • Luceño, A. (1997). Estimation of missing values in possibly partially nonstationary vector time series,Biometrika,84, 495–499.

    Article  Google Scholar 

  • Parzen, E. (1984).Time Series Analysis of Irregularly Observed Data, Springer, New York.

    MATH  Google Scholar 

  • Peña, D. and Tiao, G.C. (1991). A note on likelihood estimation of missing values in time series,Amer. Statist.,45, 212–213.

    Article  MathSciNet  Google Scholar 

  • Penzer, J. and Shea, B. (1997). The exact likelihood of an autoregressive-moving average model with incomplete data,Biometrika,84, 919–928.

    Article  MathSciNet  Google Scholar 

  • Pinkus, A. M. (1989).On L 1-approximation, Cambridge University Press, London.

    Google Scholar 

  • Tong, H. (1990).Nonlinear Time Series: A Dynamical System Approach, Oxford University Press, Oxford.

    Google Scholar 

  • Venables, W. N. and Ripley, B. D. (1994).Modern Applied Statistics with S-Plus, Springer, New York.

    MATH  Google Scholar 

  • Wei, W. W. S. (1990).Time Series Analysis: Univariate and Multivariate Methods, Addison-Wesley, Redwood City, California.

    MATH  Google Scholar 

  • Whittle, P. (1963).Prediction and Regulation by Linear Least Square Methods, English University Press, London.

    Google Scholar 

  • Wincek, M. A. and Reinsel, G. C. (1986). An exact maximum likelihood estimation procedure for regression-ARMA time series models with possibly nonconsecutive data,J. Roy. Statist. Soc. Ser. B,48, 303–313.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by a CityU Research Grant and Natural Science Foundation of China.

About this article

Cite this article

Lu, Z., Hui, Y.V. L 1 linear interpolator for missing values in time series. Ann Inst Stat Math 55, 197–216 (2003). https://doi.org/10.1007/BF02530494

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02530494

Key words and phrases

Navigation