Skip to main content
Log in

Consistent and asymptotically normal estimators for cyclically time-dependent linear models

  • Estimation
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We consider a general class of time series linear models where parameters switch according to a known fixed calendar. These parameters are estimated by means of quasi-generalized least squares estimators. conditions for strong consistency and asymptotic normality are given. Applications to cyclical ARMA models with non constant periods are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, G. J. and Goodwin, G. C. (1995). Parameter estimation for periodic ARMA models,J. Time Ser. Anal.,16, 127–146.

    MathSciNet  MATH  Google Scholar 

  • Alpay, D., Freydin, B. and Loubaton, Ph. (2000). An extension problem for discrete-time almost periodically correlated stochastic processes,Linear Algebra Appl.,308, 163–181.

    Article  MathSciNet  MATH  Google Scholar 

  • Alpay, D., Chevreuil, A. and Loubaton, Ph. (2001). An extension problem for discrete-time periodically correlated stochastic processes,J. Time Ser. Anal.,22, 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson, P. L. and Vecchia, A. V. (1983). Asymptotic results for periodic autoregressive movingaverage processes,J. Time Ser. Anal.,14, 1–18.

    MathSciNet  Google Scholar 

  • Azrak, R. and Mélard, G. (2000). Asymptotic properties of quasi-likelihood estimators for ARMA models with time-dependent coefficients, unpublished working paper.

  • Basawa, I. V. and Lund, R. B. (2001). Large sample properties of parameter estimates for periodic ARMA models,J. Time Ser. Anal.,22, 551–663.

    Article  MathSciNet  Google Scholar 

  • Bentarzi, M. and Hallin, M. (1993). On the invertibility of periodic moving-average models,J. Time Ser. Anal.,15, 262–268.

    MathSciNet  Google Scholar 

  • Billingsley, P. (1995).Probability and Measure, Wiley, New York.

    MATH  Google Scholar 

  • Brockwell, P. J. and Davis, R. A. (1991).Time Series: Theory and Methods, Springer, New York.

    Google Scholar 

  • Cochrane, D. and Orcutt, D. H. (1949). Applications of least squares regression to relationships containing autocorrelated error terms,J. Amer. Statist. Assoc.,44, 32–61.

    Article  MATH  Google Scholar 

  • Dahlhaus, R. (1997). Fitting time series models to nonstationary processes,Ann. Statist.,25, 1–37.

    Article  MathSciNet  MATH  Google Scholar 

  • de Gooijer, J. G. (1998). On threshold moving-average models,J. Time Ser. Anal.,19, 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  • Dehay, D. and Monsan, V. (1996). Random sampling estimation for almost periodically correlated processes,J. Time Ser. Anal.,17, 425–445.

    MathSciNet  MATH  Google Scholar 

  • Dickey, D. A. and Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root,J. Amer. Statist. Assoc.,74, 427–431.

    Article  MathSciNet  MATH  Google Scholar 

  • Gladyshev, E. G. (1963). Periodically and almost-periodically correlated random processes with continuous time parameter,Theory Probab. Appl.,8, 173–177.

    Article  Google Scholar 

  • Godambe, V. P. and Heyde, C. C. (1987). Quasi-likelihood and optimal estimation,International Statistical Review,55, 231–244.

    Article  MathSciNet  MATH  Google Scholar 

  • Gouriéroux, C. and Monfort, A. (1995).Statistics and Econometric Models, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Hallin, M. (1986). Non-stationaryq-dependent processes and time-varying moving-average models: Invertibility properties and the forecasting problem,Adv. in Appl. probab.,18, 170–210.

    Article  MathSciNet  MATH  Google Scholar 

  • Hamilton, J. D. (1994).Time Series Analysis, Princeton University Press, Princeton, New Jersey.

    MATH  Google Scholar 

  • Kowalski, A. and Szynal, D. (1991). On a characterization of optimal predictors for nonstationary ARMA processes,Stochastic Process. Appl.,37, 71–80.

    Article  MathSciNet  MATH  Google Scholar 

  • Kwoun, G. H. and Yajima, Y. (1986). On an autoregressive model with time-dependent coefficients,Ann. Inst. Statist. Math.,38, 297–309

    Article  MathSciNet  MATH  Google Scholar 

  • Lund, R. B. and Basawa, I. V. (2000). Recursive prediction and likelihood evaluation for periodic ARMA models,J. Time Ser. Anal.,21, 75–93.

    Article  MathSciNet  MATH  Google Scholar 

  • Lund, R. B., Basawa, I. V. and Shao, Q. (2001). Parsimonious periodic time series modeling, Tech. Report 2001-12, Department of Statistics, University of Georgia.

  • Makagon, A. and Miamee, A. G. (1996). Weak law of large numbers for almost periodically correlated processes,Proc. Amer. Math. Soc.,124, 1899–1902.

    Article  MathSciNet  MATH  Google Scholar 

  • Priestley, M. B. (1965). Evolutionary spectra and nonstationary processes,J. Roy. Statist. Soc. Ser. B,27, 204–237.

    MathSciNet  MATH  Google Scholar 

  • Singh, N. and Peiris, M. S. (1987). A note on the properties of some nonstationary ARMA processes,Stochastic Process. Appl.,24, 151–155.

    Article  MathSciNet  MATH  Google Scholar 

  • Tiao, G. C. and Grupe, M. R. (1980). Hidden periodic autoregressive-moving average models in time series data,Biometrica,67, 365–373.

    Article  MathSciNet  MATH  Google Scholar 

  • Tjøstheim, D. and Paulsen, J. (1985). Least squares estimates and order determination procedures for autoregressive processes with a time dependent variance,J. Time Ser. Anal.,6, 117–133.

    MathSciNet  Google Scholar 

  • Tyssedal, J. S. and Tjøstheim, D. (1982). Autoregressive processes with a time dependent variance,J. Time Ser. Anal.,3, 209–217.

    MathSciNet  MATH  Google Scholar 

  • Vecchia, A. V. (1985). Periodic autoregressive-moving average (PARMA) modeling with applications to water resources,Water Resources Bulletin,21, 721–730.

    Google Scholar 

  • White, S. J. (1958). The limiting distribution of serial correlation coefficient in the explosive case,Ann. Math. Statist.,29, 1188–1197.

    MathSciNet  MATH  Google Scholar 

  • Whittle, P. (1965). Recursive relations for predictors of nonstationary processes,J. Roy. Statist. Soc. Ser. B,27, 523–532.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Bibi, A., Francq, C. Consistent and asymptotically normal estimators for cyclically time-dependent linear models. Ann Inst Stat Math 55, 41–68 (2003). https://doi.org/10.1007/BF02530484

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02530484

Key words and phrases

Navigation