Skip to main content
Log in

Influence of a subinhibitory dose of antifungal atty acids fromSporothrix flocculosa on cellular lipid composition in fungi

  • Article
  • Published:
Lipids

Abstracts

Antifungal fatty acids produced by the biocontrol fungusSporothrix flocculosa were studied on the basis of their effect on growth and cellular lipid composition of three fungi,Cladosporium cucumerinum, Fusarium oxysporum, andS. flocculosa, whose growth was decreased by 51, 33, and 5% respectively, when exposed to 0.4 mg fatty acid per ml. The sensitivity to fatty acid antibiotics fromS. flocculosa was related to a high degree of unsaturation of phospholipid fatty acids and a low proportion of sterols. The major responses of sensitive fungi to sublethal doses of antifungal fatty acids from liquid culture ofS. flocculosa were: (i) a decrease in total lipid; (ii) an increase in the degree of fatty acid unsaturation (18∶1>18∶2 > 18∶3); (iii) an increase in free fatty acids and phosphatidic acid and a decrease in total phospholipids; and (iv) an increase in sterol/phospholipid ratio. These modifications in lipid composition led to an increase in membrane fluidity in sensitive fungi, as demonstrated by assessment of fluorescence anisotropy using liposomes and 1,6-diphenyl-1,3,5-hexatriene probe. This alteration in the physical state of lipids appears to be responsible for the previously demonstrated alteration of membrane structure and function in fungi confronted toS. flocculosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DPH:

1,6-diphenyl-1,3,5-hexatriene

FAME:

fatty acid methyl ester

FORL:

Fusacium oxysporum F. Sp.radicis-lycopersici

PA:

phosphatidic acid

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

S/P:

sterol/phospholipid ratio

TLC:

thin-layer chromatography

References

  1. Jarvis, W.R., Shaw, L.A. and Traquair, J.A. (1989) Factors Affecting Antagonism of Cucumber Powdery Mildew byStephanoascus flocculosus andS. rugulosus, Mycol. Res. 92, 162–165.

    Google Scholar 

  2. Hajlaoui, M.R., and Bélanger, R.R. (1991) Comparative Effects of Temperature and Humidity on the Activity of Three Potential Antagonists of Rose Powdery Mildew,Neth. J. Plant Pathol. 97, 203–208.

    Article  Google Scholar 

  3. Hajlaoui, M.R., and Bélanger, R.R. (1993) Antagonism of the Yeast-Like Phylloplane FungusSporothrix flocculosa AgainstErysiphe graminis vartritici, Biocont. Sci. Technol. 3, 427–434.

    Article  Google Scholar 

  4. Bélanger, R.R., Labbé, C., and Jarvis, W.R. (1994) Commercial-Scale Control of Rose Powdery Mildew with a Fungal Antagonist,Plant Dis. 78, 420–424.

    Article  Google Scholar 

  5. Hajlaoui, M.R., Benhamou, N., and Bélanger, R.R. (1992) Cytochemical Study of the Antagonistic Activity ofSporothrix flocculosa on Rose Powdery Mildew,Phytopathology 82, 583–589.

    Google Scholar 

  6. Hajlaoui, M.R., Traquair, J.A., Jarvis, W.R., and Bélanger, R.R. (1994) Antifungal Activity of Extracellular Metabolites Produced bySporothrix flocculosa, Biocont. Sci. Technol. 4, 229–237.

    Google Scholar 

  7. Choudhury, S.R., Traquair, J.A., and Jarvis, W.R. (1994) 4-Methyl-7,11-Heptadecadenal and 4-Methyl-7,11-Hepatdecadienoic Acid: New Antibiotics fromSporothrix flocculosa andSporothrix rugulosa, J. Nat. Prod. 57, 700–704.

    Article  PubMed  CAS  Google Scholar 

  8. Benyagoub, M., Bel Rhlid, R., and Bélanger, R.R. (1996) Purification and Characterization of New Fatty Acids with Antibiotic Activity Produced bySporothrix flocculosa, J. Chem. Ecol. 22, 405–413.

    Article  CAS  Google Scholar 

  9. Nieman, C. (1954) Influence of Trace Amounts of Fatty Acids on the Growth of Microorganisms,Bacteriol. Rev. 18, 147–163.

    PubMed  CAS  Google Scholar 

  10. Kabara, J.J., Vrable, R., and Lie Ken Jie, M.S.F. (1977) Antimicrobial Lipids: Natural and Synthetic Fatty acid and Monoglycerides,Lipids 12, 753–759.

    PubMed  CAS  Google Scholar 

  11. Kabara, J.J., Swieczkowski, D.M., Conley, A.J., and Truant, J.P. (1972) Fatty Acids and Derivatives as Antimicrobial Agents,Antimicrob Agents Chemother. 2, 23–28.

    PubMed  CAS  Google Scholar 

  12. Kabara,J.J. (1987) Fatty Acids and Esters as Antimicrobial/Insecticidal Agents, inEcology and Metabolism of Plant Lipids (Fuller,G.F., and Nes,W.D., eds.) pp. 220-238, American Chemical Society, Washington D.C.

  13. Watson, K., and Rose, A.H. (1980) Fatty-Acyl Composition of the LipidsSaccharomyces cerevisiae Grown Aerobically or Anaerobically in Media Containing Different Fatty Acids,J. Gen. Microbiol. 117, 225–233.

    CAS  Google Scholar 

  14. Niwano, M., Mirumachi, E., Uramoto, M., and Isono, K. (1984) Fatty Acids as Inhibitors of Microbial Cell Wall Synthesis,Agric. Biol. Chem. 48, 1359–1360.

    CAS  Google Scholar 

  15. Black, S. (1985) Inhibition of the Reductive Activation of a Valyl-tRNA Synthetase from Yeast by Unsaturated Fatty Acids and Associated Observations on Newly Found Lipophilic Substances from Yeast,J. Biol. Chem. 260, 433–440.

    PubMed  CAS  Google Scholar 

  16. Ko, Y.T., Frost, D.J., Ho, C.T., Ludescher, R.D., and Wasswrman, B.P. (1994) Inhibition of Yeast (1,3)-Beta-Glucan Synthase by Phospholipase A2 and Its Reaction Products,Biochim. Biophys. Acta. 1193, 31–40.

    Article  PubMed  CAS  Google Scholar 

  17. Homans, A.L., and Fuchs, A. (1970) Direct Bioautography on Thin Layer Chromatograms as a Method for Detecting Fungitoxic Substances,J. Chromatog. 51, 327–329.

    Article  CAS  Google Scholar 

  18. Kates,M. (1986)Laboratory Techniques in Biochemistry and Molecular Biology (Burdon,T.S., and van Knippenberg,P.H., eds.) pp. 186-278, Elsevier, Amsterdam.

  19. Marinetti, G.V. (1962) Chromatographic Separation, Identification, and Analysis of Phosphatides,J. Lipid Res. 3, 1–20.

    CAS  Google Scholar 

  20. Weet, J.D., Sancholle, M.S., and Montant, C. (1983) Effects of Triazoles on Fungi II. Lipid Composition ofTaphrina deformans, Biochem. Biophys. Acta. 752, 19–29.

    Google Scholar 

  21. Zlatkis, A., Zak, B., and Boyles, A.J. (1953) A New Method for the Direct Determination of Serum Cholesterol,J. Lab. Clin. Med. 41, 486–488.

    PubMed  CAS  Google Scholar 

  22. Alving,C.R., Schijio,S., and Mattsby-Balzer,I. (1984) Preparation and Use of Liposomes in Immunological Studies, inLiposome Technology (Gregoriadis,G., ed.) Vol. II, pp. 157-162, CRC Press, Boca Raton.

  23. Shinitzky, M., and Barenholz, Y. (1978) Fluidity Parameters of Lipid Regions Determined by Fluorescence Polarization,Biochim. Biophys. Acta 515, 367–394.

    PubMed  CAS  Google Scholar 

  24. Betina, V. (1983)Chemistry and Biology of Antibiotics, Elsevier, New York.

    Google Scholar 

  25. Niedelman,S.L. (1993) Occurence and Response to Environmental Stress in Nonmammalian Organisms, inPhospholipids Handbook (Cevc,G., ed.), pp. 23-38, Dekker Inc., New York.

  26. Sisler, H.D., and Ragsdale, N.N. (1977) Fungitoxicity and Growth Regulation Aspects of Lipid Biosynthesis,Neth. J. Pl. Path. 83 (Suppl. 1), 81–91.

    Article  CAS  Google Scholar 

  27. Weet, J.D. (1987) Mechanism of Fungal Growth Suppression by Inhibitors of Ergosterol Biosynthesis, inEcology and Metabolism of Plant Lipids (Fuller, G., and Nes, W.D., eds.), pp. 268–285. American Chemical Society Symposium, Washington, D.C.

  28. DeKruyff, B., Van Dijk, P.W.M., Goldbach, R.W., Demel, R.A., and Van Deen, L.L.M. (1973) The Effect of Different Fatty Acid and Sterol Composition on the Erythrriol Flux Through the Cell Membrane ofAcholeplasma laidlawii, Biochim. Biophys. Acta 330, 269–282.

    Article  CAS  Google Scholar 

  29. DeKruyff, B., DeGreef, W.J., Van Eyk, R.V.W., Demel, R.A., and Van Deen, L.L.M. (1973) Influence of Fatty Acid and Sterol Composition on the Lipid Phase Transition and Activity of Membrane-Bound Enzymes inAcholeplasma laidlawii, Biochim. Biophys. Acta 298, 479–499.

    Article  CAS  Google Scholar 

  30. Goyal, S., and Khuller, G.K. (1994) Structural and Functional Role of Lipids in Yeast and Mycelial Forms ofCandida albicans, Lipids 29, 793–797

    PubMed  CAS  Google Scholar 

  31. Phillips, M.C., Finer E.G., and Hauser, H. (1972) Differences Between Conformations of Lecithin and Phosphatidylethanolamine Polar Groups and Their Effects on Interactions of Phospholipid Bilayer Membranes,Biochem. Biophys. Acta 290, 397–402.

    PubMed  CAS  Google Scholar 

  32. Keough,K.M.W., and Davis,P.J. (1984) Thermal Analysis of Membranes, inMembrane Fluidity (Kates,M., and Manson,L.A., eds.), pp.55-97, Plenum Press, New York.

  33. Rodriguez, R.J., Low, C., Bottema, C.D.K., and Parks, L.W. (1985) Multiple Functions of Sterols inSaccharomyces cerevisiae, Biochim. Biophys. Acta 837, 336–343.

    PubMed  CAS  Google Scholar 

  34. Hazel, J.R., and Williams, E.E. (1990) The Role of Alterations in Membrane Composition in Enabling Physiological Adaptation of Organisms to Their Physical Environment,Progr. Lipid Res. 29, 167–227.

    Article  CAS  Google Scholar 

  35. Maresca, B., and Cossins, A.R. (1993) Fatty Feedback and Fluidity, News and Views,Nature 365, 606–607.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Benyagoub, M., Willemot, C. & Bélanger, R.R. Influence of a subinhibitory dose of antifungal atty acids fromSporothrix flocculosa on cellular lipid composition in fungi. Lipids 31, 1077–1082 (1996). https://doi.org/10.1007/BF02522465

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02522465

Keywords

Navigation