Skip to main content
Log in

Diffusion approximation of the Wright-Fisher model of population genetics: Single-locus two alleles

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We investigate an autoregressive diffusion approximation method applied to the Wright-Fisher model in population genetics by considering a Markov chain with Bernoulli distributed independent variables. The use of an autoregressive diffusion method and an averaged allelic frequency process lead to an Orn-stein-Uhlenbeck diffusion process with discrete time. The normalized averaged frequency process possesses independent allele frequency indicators with constant conditional variance at equilibrium. In a monoecious diploid population of size N with r generations, we consider the time to equilibrium of averaged allele frequency in a single-locus two allele pure sampling model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Feller, “Diffusion processes in genetics,” in: Second Berkeley Symposium, Princeton University. Princeton (1968).

    Google Scholar 

  2. M. Kimura, Diffusion Models in Population Genetics, Methuen, London 1964.

    Google Scholar 

  3. M. Kimura and T. Ohta. Theoretical Aspects of Population Genetics, PUP. Princeton, NJ (1971).

    MATH  Google Scholar 

  4. J. F. Crow and M. Kimura, An Introduction to Population Genetics Theory, Harper & Row, New York (1970).

    MATH  Google Scholar 

  5. S. Wright, Evolution and the Genetics of Populations, Vol. 2, The Theory of Gene Frequencies, CUP, Chicago 1969.

    Google Scholar 

  6. R. A. Fisher. “On the dominance ratio,” Proc. Roy. Soc. Edinburgh, 52, 321–431 (1922).

    Google Scholar 

  7. J. L. Doob. Stochastic Processes, Wiley, New York 1953.

    MATH  Google Scholar 

  8. G. R. Grimmett and D. R. Stirzaker. Probability and Random Processes, Oxford Sci. Publ., Oxford (1995).

    Google Scholar 

  9. M. Kimura, “Solution of a process of random genetic drift with a continuous model.” Proc. Nat. Acad. Sci. USA, 41. 144–150 (1955).

    Article  MATH  Google Scholar 

  10. M. Kimura, “Population genetics and molecular evolution,” Johns Hopkins Med. J, 138, 253–261 (1976).

    Google Scholar 

  11. M. Kimura, “Average time until fixation of a mutant allele in a finite population under continued mutation pressure: studies by analytical, numerical, and pseudosampling methods,” Proc. Nat. Acad. Sci. USA, 77, 522–526 (1980).

    Article  MATH  Google Scholar 

  12. M. Kimura, The Neutral Theory of Molecular Evolution, CUP (1983).

  13. W. J. Ewens, Mathematical Population Genetics, Springer, Berlin 1979.

    MATH  Google Scholar 

  14. R. Burger, W. J. Ewens, “Fixation probabilities of additive alleles in diploid populations,” J. Math. Biol., 55, 557–575 (1995).

    Article  Google Scholar 

  15. S.N. Ethier and T. Nagylaki, “Diffusion approximations of Markov chains with two time-scales and applications to population genetics,” Adv. Appl. Probab., 12, 14–9 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  16. T. Shiga, “Diffusion processes in population genetics,” J. Math. Kyoto Univ., 21, 133–151 (1981).

    MATH  MathSciNet  Google Scholar 

  17. W. J. Ewens, “Numerical results and diffusion approximations in a genetic process,” Biometrika, 50, 241–249 (1963).

    MATH  MathSciNet  Google Scholar 

  18. W. J. Ewens, “The pseudo-transient distribution and its uses in genetics,” J. Appl. Probab., 1. 141–156 (1964).

    Article  MATH  MathSciNet  Google Scholar 

  19. W. J. Ewens, “Correcting diffusion approximations in finite genetic models.” in: Technical report 4, Stanford University, Stanford 1964.

    Google Scholar 

  20. M. Kimura and T. Ohta, “The average number of generations until fixation of a mutant gene in a finite population,” Genetics, 61, 763–771 (1969).

    Google Scholar 

  21. S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, Wiley, New York 1986.

    MATH  Google Scholar 

  22. V. S. Korolyuk and R. W. Coad. Equilibrium Points with Persistent Regression: Wright-Fisher Model of Population Genetics on a Diallelic Locus, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1997).

    Google Scholar 

  23. V. S. Korolyuk and D. Korolyuk, “Diffusion approximation of stochastic Markov models with persistent regression,” Ukr. Mat. Zh., 48. No. 7, 928–935 (1995).

    MathSciNet  Google Scholar 

  24. P. Hall and C. C. Heyde. “Martingale limit theory and its applications,” Ann. Probab. (1980).

  25. M. Fukushima and D. Stroock, “Reversibility of solutions to martingale problems. Probability, statistical mechanics, and number theory.” Adv. Math. Suppl. Stud., 9, 107–123 (1986).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coad, R.W. Diffusion approximation of the Wright-Fisher model of population genetics: Single-locus two alleles. Ukr Math J 52, 388–399 (2000). https://doi.org/10.1007/BF02513133

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02513133

Keywords

Navigation