Skip to main content
Log in

Estimation of the multivariate normal precision and covariance matrices in a star-shape model

  • Estimation
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we introduce the star-shape models, where the precision matrix Ω (the inverse of the covariance matrix) is structured by the special conditional independence. We want to estimate the precision matrix under entropy loss and symmetric loss. We show that the maximal likelihood estimator (MLE) of the precision matrix is biased. Based on the MLE, an unbiased estimate is obtained. We consider a type of Cholesky decomposition of Ω, in the sense that Ω=Ψ′Ψ, where Ψ is a lower triangular matrix with positive diagonal elements. A special group\(\mathcal{G}\), which is a subgroup of the group consisting all lower triangular matrices, is introduced. General forms of equivariant estimates of the covariance matrix and precision matrix are obtained. The invariant Haar measures on\(\mathcal{G}\), the reference prior, and the Jeffreys prior of Ψ are also discussed. We also introduce a class of priors of Ψ, which includes all the priors described above. The posterior properties are discussed and the closed forms of Bayesian estimators are derived under either the entropy loss or the symmetric loss. We also show that the best equivariant estimators with respect to\(\mathcal{G}\) is the special case of Bayesian estimators. Consequently, the MLE of the precision matrix is inadmissible under either entropy or symmetric loss. The closed form of risks of equivariant estimators are obtained. Some numerical results are given for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, S. A. and Perlman, M. D. (1993). Lattice models for conditional independence in a multivariate normal distribution,The Annals of Statistics,21, 1318–1358.

    MATH  MathSciNet  Google Scholar 

  • Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors,Proceedings of the Fourth Valencia International Meeting, Bayesian Statistics,4, 35–49.

    MathSciNet  Google Scholar 

  • Bondar, J. V. and Milnes, P. (1981). Amenability: A survey for statistical applications of Hunt-Stein and related conditions on groups,Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete,57, 103–128.

    Article  MATH  MathSciNet  Google Scholar 

  • Dempster, A. M. (1972). Covariance selection,Biometrics,28, 157–175.

    Article  Google Scholar 

  • Eaton, M. L. (1970). Some problems in covariance estimation (prelimary report), Tech. Report, No. 49, Department of Statistics, Stanford University, California.

    Google Scholar 

  • Eaton, M. L. (1989).Group Invariance Applications in Statistics, Institute of Mathematical Statistics, Hayward, California.

    MATH  Google Scholar 

  • Eaton, M. L. and Olkin, I. (1987). Best equivariant estimators of a Cholesky decomposition,The Annals of Statistics,15, 1639–1650.

    MATH  MathSciNet  Google Scholar 

  • Gupta, A. K. and Nagar, D. K. (2000).Matrix Variate Distributions, Chapman & Hall Ltd., New York.

    MATH  Google Scholar 

  • Gupta, A. K. and Ofori-Nyarko, S. (1995). Improved minimax estimators of normal covariance and precision matrices,Statistics,26, 19–25.

    MATH  MathSciNet  Google Scholar 

  • Haff, L. R. (1980). Empirical Bayes estimation of the multivariate normal covariance matrix,The Annals of Statistics,8, 586–597.

    MATH  MathSciNet  Google Scholar 

  • James, W. and Stein, C. (1961). Estimation with quadratic loss,Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, 361–379, University of California Press, Berkeley.

    Google Scholar 

  • Kiefer, J. (1957). Invariance, minimax sequential estimation, and continuous time process,The Annals of Mathematical Statistics,28, 573–601.

    MATH  MathSciNet  Google Scholar 

  • Konno, Y. (2001). Inadmissibility of the maximum likelihood estimator of normal covariance matrices with the lattice conditional independence,Journal of Multivariate Analysis,79, 33–51.

    Article  MATH  MathSciNet  Google Scholar 

  • Krishnamoorthy, K. and Gupta, A. K. (1989). Improved minimax estimation of a normal precision matrix,The Canadian Journal of Statistics,17, 91–102.

    MATH  MathSciNet  Google Scholar 

  • Kubokawa, T. and Konno, Y. (1990). Estimating the covariance matrix and the generalized variance under a symmetric loss,Annals of the Institute of Statistical Mathematics,42, 331–343.

    Article  MATH  MathSciNet  Google Scholar 

  • Lauritzen, S. L. (1996).Graphical Models Oxford University Press.

  • Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979).Multivariate Analysis, Academic Press, New York.

    MATH  Google Scholar 

  • Olkin, I. and Selliah, J. B. (1977). Estimating covariances in a multivariate distribution,Statistical Decision Theory and Related Topics, Proceedings of a Symposium at Purdue University, May, 1976, in two volumes, Vol. 2, 313–326, Academic Press, New York.

    Google Scholar 

  • Pal, N. (1993). Estimating the normal dispersion matrix and the precision matrix from a decision-theoretic point of view: A review,Statistical Papers,34, 1–26.

    Article  MATH  MathSciNet  Google Scholar 

  • Robert, C. P. (1994).The Bayesian Choice: A Decision-Theoretic Motivation, Springer-Verlag Inc., New York.

    MATH  Google Scholar 

  • Sharma, D. and Krishnamoorthy, K. (1983). Orthogonal equivariant minimax estimators of bivariate normal covariance matrix and precision matrix,Calcutta Statistical Association Bulletin,32, 23–45.

    MATH  MathSciNet  Google Scholar 

  • Sinha, B. K. and Ghosh, M. (1987). Inadmissibility of the best equivariant estimators of the variance-covariance matrix, the precision matrix, and the generalized variance under entropy loss,Statistics & Decisions,5, 201–227.

    MATH  MathSciNet  Google Scholar 

  • Whittaker, J. (1990).Graphical Models in Applied Multivariate Statistics, John Wiley & Sons, New York.

    MATH  Google Scholar 

  • Wong, F., Carter, C. K., and Kohn, R. (2003). Efficient estimation of covariance selection models,Biometrika,90, 809–830.

    Article  MathSciNet  Google Scholar 

  • Yang, R. and Berger, J. O. (1994). Estimation of a covariance matrix using the reference prior,The Annals of Statistics 22, 1195–1211.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The project is supported by the National Science Foundation grants DMS-9972598, SES-0095919, and SES-0351523, and a grant from Federal Aid in Wildlife Restoration Project W-13-R through Missouri Department of Conservation.

About this article

Cite this article

Sun, D., Sun, X. Estimation of the multivariate normal precision and covariance matrices in a star-shape model. Ann Inst Stat Math 57, 455–484 (2005). https://doi.org/10.1007/BF02509235

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02509235

Key words and phrases

Navigation