Skip to main content
Log in

Long-time tails of the velocity autocorrelation functions for the triangular periodic Lorentz gas

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present numrical results on the velocity autocorrelation function (VACF)C(t)=<ν(t)·ν(0)> for the periodic Lorentz gas on a two-dimensional triangular lattice as a function of the radiusR of the hard disk scatterers on the lattice. Our results for the unbounded horizon case\((0< R< \sqrt 3 /4)\) confirm 1/t decay of the VACF for long times (out to 100 times the mean free time between collisions) and provide strong support for the conjecture by Friedman and Martin that the 1/t decay is due to long free paths along which a moving particle does not scatter up to timet. Even after new sets of long free paths become available forR<1/4, we continue to find good agreement between numerical results and an analytically estimated 1/t decay. For the bounded horizon case\((\sqrt 3 /4 \leqslant R \leqslant 0.5)\), our numerical VACFs decay exponentially, although it is difficult to discriminate among pure exponential decay, exponential decay with prefactor, and stretched exponential decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. G. Sinai, Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards,Russ. Math. Surveys 25: 137–189 (1970) for the periodic Lorentz gas with a bounded horizon. I. Kubo,Billiard Problem, Seminar on Probability 37 (1972) (in Japanese), andLect. Notes in Math. 330: 287 (1973) for the periodic Lorentz gas with an unbounded horizon.

    Article  MathSciNet  Google Scholar 

  2. G. Gallavotti and D. S. Ornstein, Billiards and Bernoulli schemes,Commum. Math. Phys. 38: 83–101 (1974).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. L. A. Bunimovich and Ya. G. Sinai, Statistical properties of Lorentz gas with periodic configuration of scatterers,Commun. Math. Phys. 78: 479–197 (1981). L. A. Bunimovich, Ya. G. Sinai, and N. I. Chernov, Statistical properties of two-dimensional hyperbolic billiards,Russ. Math. Surveys 46: 47–106 (1991).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. G. Casati, G. Comparin, and I. Guarneri, Decay of correlations in certain hyperbolic systems,Phys. Rev. A 26: 717–719 (1982).

    Article  ADS  Google Scholar 

  5. P. L. Garrido and G. Gallavotti, Billiards correlation functions,J. Stat. Phys. 76: 549–585 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Machta and B. Reinhold, Decay of correlations in the regular Lorentz gas,J. Stat. Phys. 42: 949–959 (1986).

    Article  MathSciNet  Google Scholar 

  7. J. Machta, Power law decay of correlations in a billiard problem,J. Stat. Phys. 32: 555–564 (1983).

    Article  MathSciNet  Google Scholar 

  8. F. Vivaldi, G. Casati, and I. Guarneri, Origin of long-time tails in strongly chaotic systems,Phys. Rev. Lett. 51: 727–730 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  9. J.-P. Bouchaud and P. Le Doussal, Numerical study of ad-dimensional periodic Lorentz gas with universal properties,J. Stat. Phys. 41: 225–248 (1985).

    Article  Google Scholar 

  10. J.-P. Bouchaud and P. Le Doussal, Critical behaviour and intermittency in Sinai's billiard,Physica D 20: 335–349 (1986).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. B. Friedman and R. F. Martin Jr., Decay of the velocity autocorrelation function for the periodic Lorentz gas,Phys. Lett. A 105: 23–26 (1984).

    Article  ADS  Google Scholar 

  12. B. Friedman, The billiard problem, PhD. Thesis, University of Illinois, Physics Department (1985).

  13. B. Friedman and R. F. Martin Jr., Behavior of the velocity autocorrelation function for the periodic Lorentz gas,Physica D 30: 219–227 (1988).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. J. Machta and R. Zwanzig, Diffusion in a periodic gas,Phys. Rev. Lett. 50: 1959 (1983).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. L. A. Bunimovich, Decay of correlations in dynamical systems with chaotic behavior,Zh. Eksp. Teor. Fiz. 89: 1452–1471 (1985) (Sov. Phys. JETP 62: 842–852 (1986)).

    Google Scholar 

  16. P. M. Bleher, Statistical properties of two-dimensional periodic Lorentz gas with infinite horizon,J. Stat. Phys. 66: 315–373 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Zacherl, T. Geisel, J. Nierwetberg, and G. Radons, Power spectra for anomalous diffusion in the extended Sinai billiard,Phys. Lett. A 114: 317–321 (1986).

    Article  ADS  Google Scholar 

  18. N. I. Chernov, Statistical properties of the periodic Lorentz gas. Multidimensional case,J. Stat. Phys. 74: 11–53 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  19. C. P. Lowe and A. J. Masters, The long-time behaviour of the velocity autocorrelation function in a Lorentz gas,Physica A 195: 149 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuoka, H., Martin, R.F. Long-time tails of the velocity autocorrelation functions for the triangular periodic Lorentz gas. J Stat Phys 88, 81–103 (1997). https://doi.org/10.1007/BF02508465

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02508465

Key Words

Navigation