Skip to main content
Log in

Empirical characteristic function approach to goodness-of-fit tests for the Cauchy distribution with parameters estimated by MLE or EISE

  • Test
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We consider goodness-of-fit tests of the Cauchy distribution based on weighted integrals of the squared distance between the empirical characteristic function of the standardized data and the characteristic function of the standard Cauchy distribution. For standardization of data Gürtler and Henze (2000,Annals of the Institute of Statistical Mathematics,52, 267–286) used the median and the interquartile range. In this paper we use the maximum likelihood estimator (MLE) and an equivariant integrated squared error estimator (EISE), which minimizes the weighted integral. We derive an explicit form of the asymptotic covariance function of the characteristic function process with parameters estimated by the MLE or the EISE. The eigenvalues of the covariance function are numerically evaluated and the asymptotic distributions of the test statistics are obtained by the residue theorem. A simulation study shows that the proposed tests compare well to tests proposed by Gürtler and Henze and more traditional tests based on the empirical distribution function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, T. W. and Darling, D. A. (1952). Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes.The Annals of Mathematical Statistics,23, 193–212.

    MATH  MathSciNet  Google Scholar 

  • Baker, C. T. H. (1977).The Numerical Treatment of Integral Equations, Clarendon Press, Oxford.

    MATH  Google Scholar 

  • Besbeas, P. and Morgan, B. (2001). Integrated squared error estimation of Cauchy parameters,Statistics & Probability Letters,55, 397–401.

    Article  MATH  MathSciNet  Google Scholar 

  • Copas, J. B. (1975). On the unimodality of the likelihood for the Cauchy distribution,Biometrika,62, 701–704.

    Article  MATH  MathSciNet  Google Scholar 

  • Csörgő, S. (1983). Kernel-transformed empirical process,Journal of Multivariate Analysis,13, 517–533.

    Article  MathSciNet  Google Scholar 

  • Durbin, J. (1973a).Distribution Theory for Tests Based on the Sample Distribution Function, SIAM, Philadelphia.

    MATH  Google Scholar 

  • Durbin, J. (1973b). Weak convergence of the sample distribution function when parameters are estimated.The Annals of Statistics,1, 279–290.

    MATH  MathSciNet  Google Scholar 

  • Gürtler, N. and Henze, N. (2000). Goodness-of-fit tests for the Cauchy distribution based on the empirical characteristic function.Annals of the Institute of Statistical Mathematics,52, 267–286.

    Article  MATH  MathSciNet  Google Scholar 

  • Hammerstein, A. (1927). Über Entwicklungen gegebener Funktionen nach Eigenfunktionen von Randwertaufgaben,Mathematische Zeitschrift,27, 269–311.

    Article  MATH  MathSciNet  Google Scholar 

  • Maesono, Y. (2001).Toukeitekisuisoku no Zenkinriron, Kyushu University Press, Fukuoka, Japan (in Japanese).

    Google Scholar 

  • Matsui, M. and Takemura, A. (2003). Empirical characteristic function approach to goodness-of-fit tests for the Cauchy distribution with parameters estimated by MLE or EISE, Discussion Paper CIEJE 2003-CF-226, Center for International Research on the Japanese Economy, Faculty of Economics, University of Tokyo, available from http://www.e.u-tokyo.ac.jp/cirje/research/dp/2003/list.htm.

  • Serfling, R. J. (1980).Approximation Theorems of Mathematical Statistics, John Wiley, New York.

    MATH  Google Scholar 

  • Slepian, D. (1957). Fluctuations of random noise power,Bell System Technical Journal,37, 163–184.

    MathSciNet  Google Scholar 

  • Tanaka, K. (1996).Time Series Analysis: Nonstationary and Noninvertible Distribution Theory, John Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Matsui, M., Takemura, A. Empirical characteristic function approach to goodness-of-fit tests for the Cauchy distribution with parameters estimated by MLE or EISE. Ann Inst Stat Math 57, 183–199 (2005). https://doi.org/10.1007/BF02506887

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02506887

Keywords

Navigation