Skip to main content
Log in

Improving on the minimum risk equivariant estimator of a location parameter which is constrained to an interval or a half-interval

  • Estimation
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

For location families with densitiesf 0(x−θ), we study the problem of estimating θ for location invariant lossL(θ,d)=ρ(d−θ), and under a lower-bound constraint of the form θ≥a. We show, that for quite general (f 0, ρ), the Bayes estimator δ U with respect to a uniform prior on (a, ∞) is a minimax estimator which dominates the benchmark minimum risk equivariant (MRE) estimator. In extending some previous dominance results due to Katz and Farrell, we make use of Kubokawa'sIERD (Integral Expression of Risk Difference) method, and actually obtain classes of dominating estimators which include, and are characterized in terms of δ U . Implications are also given and, finally, the above dominance phenomenon is studied and extended to an interval constraint of the form θ∈[a, b].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berger, J. O. (1985).Statistical Decision Theory and Bayesian Analysis, 2nd ed., Springer-Verlag, New York.

    MATH  Google Scholar 

  • Blumenthal, S. and Cohen, A. (1968). Estimation of two ordered translation parameters,Annals of Mathematical Statistics,39, 517–530.

    MathSciNet  Google Scholar 

  • Farrell, R. H. (1964). Estimators of a location parameter in the absolutely continuous case,Annals of Mathematical Statistics,35, 949–998.

    MATH  MathSciNet  Google Scholar 

  • Gatsonis, C., MacGibbon, B. and Strawderman, W. E. (1987). On the estimation of a restricted normal mean,Statistics & Probability Letters,6, 21–30.

    Article  MATH  MathSciNet  Google Scholar 

  • Katz, M. (1961). Admissible and minimax estimates of parameters in truncated spaces,Annals of Mathematical Statistics,32 136–142.

    MATH  MathSciNet  Google Scholar 

  • Hartigan, J. (2004). Uniform priors on convex sets improve risk,Statistics & Probability Letters,67, 285–288.

    Article  MATH  MathSciNet  Google Scholar 

  • Kubokawa, T. (1994a). A unified approach to improving equivariant estimators,Annals of Statistics,22, 290–299.

    MATH  MathSciNet  Google Scholar 

  • Kubokawa, T. (1994b). Double shrinkage estimation of ratio of scale parameters,Annals of the Institute of Statistical Mathematics,46, 95–119.

    Article  MATH  MathSciNet  Google Scholar 

  • Kubokawa, T. (1998). The Stein phenomenon in simultaneous estimation: A review,Applied Statistical Science III (eds. S. E. Ahmed, M. Ahsanullah and B. K. Sinha), 143–173, NOVA Science Publishers, New York.

    Google Scholar 

  • Kubokawa, T. (1999). Shrinkage and modification techniques in estimation of variance and the related problems: A review,Communications in Statistics: Theory and Methods,28, 613–650.

    MATH  MathSciNet  Google Scholar 

  • Kubokawa, T. and Saleh, A. K. MD. E. (1994). Estimation of location and scale parameters under order restrictions,Journal of Statistical Research,28, 41–51.

    MathSciNet  Google Scholar 

  • Kumar, S. and Sharma, D. (1988). Simultaneous estimation of ordered parameters,Communications in Statistics: Theory and Methods,17, 4315–4336.

    MATH  MathSciNet  Google Scholar 

  • Lehmann, E. L. and Casella, G. (1998).Theory of Point Estimation, 2nd ed., Springer-Verlag, New York.

    MATH  Google Scholar 

  • Marchand, É. and Perron, F. (2001). Improving on the MLE of a bounded normal mean.Annals of Statistics,29, 1078–1093.

    Article  MATH  MathSciNet  Google Scholar 

  • Parsian, A. and Sanjari Farsipour, N. (1997). Estimation of parameters of exponential distribution in the truncated space using asymmetric loss function,Statistical Papers,38, 423–443.

    Article  MATH  MathSciNet  Google Scholar 

  • Rukhin, A. L. (1990). Comments on ‘Developments in decision-theoretic variance estimation’, by Maatta, J. M. and Casella, G.,Statistical Science,5, 113–116.

    Google Scholar 

  • Wald, A. (1950).Statistical Decision Functions, Wiley, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by NSERC of Canada.

About this article

Cite this article

Marchand, É., Strawderman, W.E. Improving on the minimum risk equivariant estimator of a location parameter which is constrained to an interval or a half-interval. Ann Inst Stat Math 57, 129–143 (2005). https://doi.org/10.1007/BF02506883

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02506883

Key words and phrases

Navigation