Skip to main content
Log in

A test for independence of two stationary infinite order autoregressive processes

  • Time Series
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

This paper considers the independence test for two stationary infinite order autoregressive processes. For a test, we follow the empirical process method and construct the Cramér-von Mises type test statistics based on the least squares residuals. It is shown that the proposed test statistics behave asymptotically the same as those based on true errors. Simulation results are provided for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai, J. (1994). Weak convergence of the sequential empirical processes of residuals in ARMA models,Annals of Statistics,22, 2051–2061.

    MATH  MathSciNet  Google Scholar 

  • Berk, K. (1974). Consistent autoregressive spectral estimates,Annals of Statistics,2, 489–502.

    MATH  MathSciNet  Google Scholar 

  • Billingsley, P. (1968).Convergence of Probability Measure, Wiley, New York.

    Google Scholar 

  • Blum, J. R., Kiefer, J. and Rosenblatt, M. (1961). Distribution free tests of independence based on the sample distribution function,Annals of Mathematical Statistics,32, 485–498.

    MATH  MathSciNet  Google Scholar 

  • Brockwell, P. J. and Davis, R. A. (1990).Time Series: Theory and Models, 2nd ed., Springer-Verlag, New York.

    Google Scholar 

  • Carlstein, E. (1988). Degenerate U-statistic based on non-independent observations,Calcutta Statistical Association Bulletin,37, 55–65.

    MATH  MathSciNet  Google Scholar 

  • Delgado, M. A. (1996). Testing serial independence using the sample distribution function,Journal of Time Series Analysis,17, 271–286.

    MATH  MathSciNet  Google Scholar 

  • Delgado, M. A. and Mora, J. (2000) A nonparametric test for serial independence of regression errors,Biometrika,87, 228–234.

    Article  MATH  MathSciNet  Google Scholar 

  • Dunford, N. and Schwartz, J. T. (1963).Linear Operators, Wiley, New York.

    Google Scholar 

  • Geweke, J. (1981). A comparison of tests of the independence of two covariance-stationary time series,Journal of the American Statistical Association,76, 363–373.

    Article  MATH  MathSciNet  Google Scholar 

  • Haugh, L. D. (1976). Checking the independence of two covariance-stationary time series: A univariate residual cross-correlation approach.Journal of the American Statistical Association,71, 378–385.

    Article  MATH  MathSciNet  Google Scholar 

  • Hoeffding, W. (1948). A nonparametric test of independence,Annals of Mathematical Statistics,26, 189–211.

    Google Scholar 

  • Hong, Y. (1996). Testing for independence between two covariance stationary time series,Biometrika,83, 615–625.

    Article  MATH  MathSciNet  Google Scholar 

  • Hong, Y. (1998). Testing for pairwise serial independence via the empirical distribution function,Journal of the Royal Statistical Society, Series B,60, 429–453.

    Article  MATH  Google Scholar 

  • Lee, S. and Karagrigoriou, A. (2001). An asymptotically optimal selection of the order of a linear processes,Sankhyā A,63, 93–106.

    MATH  MathSciNet  Google Scholar 

  • Lee, S. and Wei, C. Z. (1999). On residual empirical processes of stochastic regression models with applications to time series,Annals of Statistics,27, 237–261.

    Article  MATH  MathSciNet  Google Scholar 

  • Neuhaus, G. (1971). On weak convergence of stochastic processes with multidimensional time parameter,Annals of Mathematical Statistics,42, 1285–1295.

    MATH  MathSciNet  Google Scholar 

  • Pierce, D. A. (1977). Relationships- and the lack thereof-between economic time series, with special reference to money and interest rates,Journal of the American Statistical Association,72, 11–22.

    Article  Google Scholar 

  • Priestley, M. B. (1981).Spectral Analysis and Time Series, Vol. 1, Academic Press, London.

    MATH  Google Scholar 

  • Serfling, R. (1980).Approximation Theorems of Mathematical Statistics, Wiley, New York.

    MATH  Google Scholar 

  • Shibata, R. (1980). Asymptotically efficient selection of the order of the model for estimating parameters of a linear processes,Annals of Statistics,8, 147–164.

    MATH  MathSciNet  Google Scholar 

  • Shorack, G. R. and Wellner, J. A. (1986).Empirical Processes with Applications to Statistics, Wiley, New York.

    Google Scholar 

  • Skaug, H. J. (1993). The limit distribution of the Hoeffding statistic for test of serial independence (unpublished).

  • Skaug, H. J. and Tjøstheim, D. (1993). A nonparametic test of serial; independence based on the empirical distribution function,Biometrika,80, 591–602.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kim, E., Lee, S. A test for independence of two stationary infinite order autoregressive processes. Ann Inst Stat Math 57, 105–127 (2005). https://doi.org/10.1007/BF02506882

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02506882

Key words and phrases

Navigation