Skip to main content
Log in

Kernel estimation and interpolation for time series containing missing observations

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Summary

Kernel estimators of conditional expectations are adapted for use in the analysis of stationary time series containing missing observations. Estimators of conditional expectations at fixed points are shown to have an asymptotic distribution with a relatively simple variance-covariance structure. The kernel method is also used to interpolate missing observations, and is shown to converge in probability to the least squares predictor. The results are established under the strong mixing condition and moment conditions, and the methods are applied to a real data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad, I. A. (1979) Strong consistency of density estimation by orthogonal series methods for dependent variables with applications,Ann. Inst. Statist. Math.,31, 279–288.

    Article  MathSciNet  Google Scholar 

  2. Akaike, H. and Ishiguro, M. (1980). Trend estimation with missing observations,Ann. Inst. Statist. Math.,32, 481–488.

    Article  Google Scholar 

  3. Collomb, G. (1982). Proprietes de convergence presque complete du predicteur a noyau (preprint).

  4. Deo, C. M. (1973) A note on empirical processes of strong mixing sequences,Ann. Prob. 5, 870–875.

    Article  MathSciNet  Google Scholar 

  5. Devroye, L. P. and Wagner, T. J. (1980) On theL 1 convergence of kernel estimators of regression with applications in discrimination,Zeit. Wahrscheinlichkeitsth.,51, 15–25.

    Article  Google Scholar 

  6. Dunsmuir, W. and Robinson, P. M. (1982) Estimation of time series models in the presence of missing data,J. Amer. Statist. Ass.,76, 560–568.

    Article  Google Scholar 

  7. Hall, P. (1983) Large sample optimality of least squares cross-validation in density estimation,Ann. Statist.,11, 1156–1174.

    Article  MathSciNet  Google Scholar 

  8. Ibragimov, I. A. and Linnik, Yu. V. (1971).Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen.

    MATH  Google Scholar 

  9. Masry, E. (1983). Probability density estimation from sampled data,IEEE Trans. Inf. Theory,29, 696–709.

    Article  MathSciNet  Google Scholar 

  10. Parzen, E. M. (1963) On spectral analysis with missing observations and amplitude modulation,Sankhyã A,25, 383–392.

    MathSciNet  MATH  Google Scholar 

  11. Pham, T. D. (1981). Nonparametric estimation of the drift coefficient in the diffusion equation,Math. Oper.,12, 61–73.

    MathSciNet  MATH  Google Scholar 

  12. Rao, C. R. (1973)Linear Statistical Inference and its Applications, 2nd ed., Wiley, New York.

    Book  Google Scholar 

  13. Robinson, P. M. (1983). Nonparametric estimators for time series,J. Time Series Anal.,4, 185–207.

    Article  MathSciNet  Google Scholar 

  14. Rosenblatt, M. (1970). Density estimators and Markov sequences, inNonparametric Techniques in Statistical Inference (ed. Puri, M. C.), Cambridge University Press, Cambridge, 199–210.

    Google Scholar 

  15. Roussas, G. (1967). Nonparametric estimation in Markov processes,Ann. Inst. Statist. Math.,21, 73–87.

    Article  MathSciNet  Google Scholar 

  16. Roussas, G. (1969). Nonparametric estimation of the transition distribution function of a Markov process,Ann. Math. Statist.,40, 1386–1400.

    Article  MathSciNet  Google Scholar 

  17. Sakai, H. (1980). Fitting autoregressions with regularly missed observations,Ann. Inst. Statist. Math.,32, 393–400.

    Article  MathSciNet  Google Scholar 

  18. Silverman, B. (1978). Choosing the window width when estimating a density,Biometrika,65, 1–11.

    Article  MathSciNet  Google Scholar 

  19. Stein, E. M. (1970).Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J.

    MATH  Google Scholar 

  20. Takahata, H. (1977). Limiting behaviour of density estimates for stationary asymptotically uncorrelated processes,Bull. Tokyo Gakugei Univ., IV,29, 1–9.

    MathSciNet  MATH  Google Scholar 

  21. Takahata, H. (1980). Almost sure convergence of density estimators for weakly dependent stationary processes,Bull. Tokyo Gakugei Univ. IV,32, 11–32.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Robinson, P.M. Kernel estimation and interpolation for time series containing missing observations. Ann Inst Stat Math 36, 403–417 (1984). https://doi.org/10.1007/BF02481979

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02481979

Keywords

Navigation