Skip to main content
Log in

Charge trapping by solitions—A possible transport mechanism in macromolecular systems

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Macromolecules and their aggregates possess polar modes which, when excited, cause deformations, which provoke in turn elastic restoring forces. Even the simplest of such models (involving polarization and elastic modes along a chain) admit localized excitations (solitons) endowed with a characteristic degree of stability; and these provide a mechanism for charge trapping which may be of importance in the understanding of the elusively high efficiency of charge transfer over macroscopic distances evidently involved in various biomolecular processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Balanovski, E. and P. Beaconsfield, 1982. “The Role of Non-linear Electric Field Effects and Soliton Formation and Propagation in DNA Function”.Phys. Lett. 93A, 52–54.

    Google Scholar 

  • Bhaumik, D., K. Bhaumik, B. Dutta-Roy and M. H. Engineer. 1977. “Polar Modes with Elastic Restoring Forces, ‘Bose Condensation’ and the Possibility of Metastable Ferroelectric State”.Phys. Lett. 62A, 197–200.

    Google Scholar 

  • —, B. Dutta-Roy and A. Lahiri. 1978a. “The ‘Van der Waals Interaction” Between Loose Structure”.Phys. Lett. 68A, 131–134.

    Google Scholar 

  • —— and A. Lahiri. 1978b. “Effect of the Intervening Medium and of Feeding of Energy into Polar Modes on Macromolecular Interactions”.Phys. Lett. 69A, 68–72.

    Google Scholar 

  • —— and —. 1982. “Solitary Waves and Macromolecular Systems”.Bull. math. Biol. 44, 705–713.

    MATH  Google Scholar 

  • Bilz, H., H. Buttner and H. Fröhlich. 1981. “Electret Model for the Collective Behaviour of Biological Systems”.Z. Naturforsch. B36, 208–212.

    Google Scholar 

  • Brown, D. and K. Lindenberg. 1986a. “Applicability of Hamilton's Equations in the Quantum Soliton Problem”.Phys. Rev. A33, 4104–4109.

    Article  MathSciNet  Google Scholar 

  • —, B. J. West and K. Linderberg. 1986b., “Davydov Solitons: New Results at Variance with Standard Derivations”.Phys. Rev. A33, 4110–4120.

    Article  MathSciNet  Google Scholar 

  • Careri, G., U. Bountempo, F. Carta, E. Gratton and A. C. Scott. 1983. “Infrared Absorption in Acetanilide by Solitons”.Phys. Rev. Lett. 51, 304–307.

    Article  Google Scholar 

  • —, U. Bountempo, F. Galluzzi, A. C. Scott, E. Gratton and E. Shyamsunder. 1984. “Spectroscopic Evidence for Davydov-like Solitons in Acetanilide”.Phys. Rev. B30, 4689–4702.

    Article  Google Scholar 

  • Davydov, A. S. 1977. “Solitons and Energy Transfer along Protein Molecules”.J. theor. Biol. 66, 379–387.

    Article  Google Scholar 

  • — 1979. “Bioenergetics and the Mechanism of Muscle Contraction”.Int. J. Quan. Chem. 16, 5–17.

    Article  Google Scholar 

  • —. 1981. “The Role of Solitons in the Energy and Electron Transfer in One-dimensional Molecular Systems”.Physica,3D (1, 2), 1–22.

    MathSciNet  Google Scholar 

  • — and N. I. Kishukha. 1976. “Solitons in One-Dimensional Molecular Chains”.Sov. Phys. J.E.T.P. 44, 571–575.

    Google Scholar 

  • Deryatkov, N. D.et al. 1974. “Scientific Session of the Division of General Physics and Astronomy, USSR Academy of Sciences”.Soviet Phys. Usp. 16, 568.

    Article  Google Scholar 

  • Englander, S. W., N. R. Kallenback, A. J. Heeger, J. A. Krumhansi and S. Litwin. 1980. “Nature of the Open State in Polynucleotide Double Helices: Possibility of Soliton Excitations”.Proc. natn. Acad. Sci. U.S.A.,77, 7222–7226.

    Article  Google Scholar 

  • Fröhlich, H. 1973. “Collective Behaviour of Non-linearly Coupled Oscillating Fields with Applications to Biological Systems”.Collect. Phenomena 1, 101–109.

    Google Scholar 

  • — 1975. “The Extraordinary Dielectric Properties of Biological Materials and the Action of Enzyme”.Proc. natn. Acad. Sci. U.S.A.,72, 4211–4215.

    Article  Google Scholar 

  • Jensen, P., M. V. Jaric and K. H. Bannemann. 1983. “Soliton-like Processes During Right-Left Transition in DNA”.Phys. Lett. 95A, 204–208.

    Google Scholar 

  • Khan, A., D. Bhaumik and B. Dutta-Roy. 1985. “The Possible Role of Solitonic Processes During A to B Conformational Changes in DNA”.Bull. math. Biol. 47, 783–790.

    MATH  Google Scholar 

  • Krumhansl, J. A. and D. M. Alexander. 1983.Structure and Dynamics: Nucleic Acid and Proteins. E. Clementi and R. H. Sarma (Eds), pp. 61–80. New York: Adenine Press.

    Google Scholar 

  • ——, G. M. Wysin, A. Garcia, P. S. Lomdahl and S. P. Layne. 1985. “Further Theoretical Studies of (Non-linear) Conformational Motions in Double-helix DNA, Structure and Motion”. InMembranes, Nucleic Acids and Proteins, E. Clementi, G. Corongin, M. H. Sarma and R. H. Sarma (Eds), pp. 407–415. New York: Adenine Press.

    Google Scholar 

  • Landau, L. D. and I. M. Lifschitz. 1965.Quantum Mechanics, pp. 72–73. New York: Pergamon Press.

    Google Scholar 

  • Layne, S. P., I. J. Bigio, A. C. Scott and P. S. Lomdahl. 1985. “Transient Fluorescence in Synchronously DividingEscherichia coli”.Proc. natn. Acad. Sci. U.S.A.,82, 7599–7603.

    Article  Google Scholar 

  • Scott, A. C. 1981. “The Laser Raman Spectrum of a Davydov Soliton”.Phys. Lett. A86, 60–62.

    Article  Google Scholar 

  • — 1982a. “Dynamics of Davydov Solitons”.Phys. Rev. A26, 578–595.

    Article  MathSciNet  Google Scholar 

  • — 1982b. “The Vibrational Structure of Davydov Solitons”.Physica Scripta,25, 651–658.

    MATH  MathSciNet  Google Scholar 

  • Scott, A. C., J. H. Heymen and D. W. McLanghlin. 1979. “On Davydov's Alpha-helix Solitons”. Preprint, Los Almos Scientific Laboratory.

  • Skinner, J. C. and P. G. Wolynes. 1980. “Transition State and Brownian Motion Theory of Solitons”.J. Chem. Phys. 73, 4015–4025.

    Article  MathSciNet  Google Scholar 

  • Sobell, H. M., T. D. Sakore, S. C. Jain, A. Banerjee, K. K. Bhandary, B. S. Reddy and E. D. Lozansky. 1983. “β-kinked DNA—a Structure that Gives Rise to Drug Intercalation and DNA Breathing-and its Wider Significance in Determining the Premelting and Melting Behaviour of DNA”.Cold Spring Harbour Symposia on Quantitative Biology,XLVII, 293–314.

    Google Scholar 

  • Webb, S. J. 1980. “Laser Raman Spectroscopy of Living Cells”.Phys. Rep. 60, 201–224.

    Article  Google Scholar 

  • — and A. D. Booth. 1969. “Absorption of Microwaves by Microorganisms.”Nature, Lond. 222, 1199–1200.

    Article  Google Scholar 

  • — and M. E. Stoneham. 1977. “Resonances Between 1011–1012 Hz in Active Bacterial Cells as Seen by Laser Raman Spectroscopy’”.Phys. Lett. 60A, 267–269.

    Google Scholar 

  • Wu, T. M. and S. Austin 1977. “Bose Condensation in Biosystems”.Phys. Lett. 64A, 151–152.

    Google Scholar 

  • — and —. 1978. “Cooperative Behaviour in Biological Systems”.Phys. Lett. 65A, 74–76.

    Google Scholar 

  • Yomosa, S. 1983. “Soliton Excitations in DNA Double Helices”.Phys. Rev. A27, 2120–2125.

    Article  MathSciNet  Google Scholar 

  • —. 1984. “Solitary excitations in DNA Double Helices”.Phys. Rev. A30, 474–480.

    Article  Google Scholar 

  • —. 1985. “Solitary Excitations in Muscle Proteins”.Phys. Rev. A32, 1752–1758.

    Article  Google Scholar 

  • Zmudzinas, J. S. 1978. “Electron Trapping by Supersonic Solitons in One-dimensional Systems”.Phys. Rev.,B17, 3919–3925.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, A., Bhaumik, D. & Dutta-Roy, B. Charge trapping by solitions—A possible transport mechanism in macromolecular systems. Bltn Mathcal Biology 49, 729–735 (1987). https://doi.org/10.1007/BF02481770

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02481770

Keywords

Navigation