Skip to main content
Log in

Fourier and Hermite series estimates of regression functions

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Summary

In the paper we estimate a regressionm(x)=E {Y|X=x} from a sequence of independent observations (X 1,Y 1),…, (X n, Yn) of a pair (X, Y) of random variables. We examine an estimate of a type\({{\hat m\left( x \right) = \sum\limits_{j = 1}^n {Y_{j\varphi N} } \left( {x,X_j } \right)} \mathord{\left/ {\vphantom {{\hat m\left( x \right) = \sum\limits_{j = 1}^n {Y_{j\varphi N} } \left( {x,X_j } \right)} {\sum\limits_{j = 1}^n {\varphi _N } \left( {x,X_j } \right)}}} \right. \kern-\nulldelimiterspace} {\sum\limits_{j = 1}^n {\varphi _N } \left( {x,X_j } \right)}}\), whereN depends onn andϕ N is Dirichlet kernel and the kernel associated with the hermite series. Assuming, that E|Y|<∞ and |Y|≦γ≦∞, we give condition for\(\hat m\left( x \right)\) to converge tom(x) at almost allx, provided thatX has a density. if the regression hass derivatives, then\(\hat m\left( x \right)\) converges tom(x) as rapidly asO(nC−(2s−1)/4s) in probability andO(n −(2s−1)/4s logn) almost completely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bluez, J. and Bosq, D. (1976). Conditions nécessaires et suffisantes de convergence pour une class d'estimateurs de la densité,C. R. Acad. Sci., Paris,282, 636–666.

    Google Scholar 

  2. Collomb, G. (1981). Estimation non paramétrique de la regression: revue bibliographique,Internat. Statist. Rev.,49, 75–93.

    Article  MathSciNet  Google Scholar 

  3. Földes, A. and Révész, R. (1974). A general method for density estimation,Studia Sci. Math. Hungar.,9, 81–92.

    MathSciNet  MATH  Google Scholar 

  4. Glick, N. (1974). Consistency conditions for probability estimators and integrals for density estimators,Utilitas Math.,5, 61–74.

    MathSciNet  MATH  Google Scholar 

  5. Greblicki, W., Krzyzak, A. and Pawlak, M. (1984). Distribution-free pointwise consistency of kernel regression estimates,Ann. Statist.,12, 1570–1575.

    Article  MathSciNet  Google Scholar 

  6. Greblicki, W. and Pawlak, M. (1984). Hermite series estimate of a probability density and its derivatives,J. Multivariate Anal.,15, 174–182.

    Article  MathSciNet  Google Scholar 

  7. Greblicki, W. and Pawlak, M. (1985). Pointwise consistency of the Hermite series density estimate,Probability and Statistics Letters, to appear.

  8. Hoeffding, W. (1953). Probability inequalities for sums of bounded random variables,J. Amer. Statist. Ass.,58, 13–30.

    Article  MathSciNet  Google Scholar 

  9. Hunt, R. A. (1968). On the convergence of Fourier series, Orthogonal Expansion and their Continuous Analogues,Proc. Conf. Edwardsville, 1967, 235–255, Southern Illinois Univ. Press, Carbondale, Ill.

    Google Scholar 

  10. Kronmal, R. and Tarter, M. (1968). The estimation of probability densities and cumulatives by Fourier series methods,J. Amer. Statist. Ass.,63, 925–952.

    MathSciNet  MATH  Google Scholar 

  11. Krzyzak, A. and Pawlak, M. (1984). Distribution-free consistency of nonparametric kernel regression estimate and classification,IEEE Trans. Inform. Theory, IT-30, 78–81.

    Article  MathSciNet  Google Scholar 

  12. Nadaraya, E. A. (1964). On estimating regression,Theory of Probability and its Applications,9, 141–142.

    Article  Google Scholar 

  13. Sansone, G. (1959).Orthogonal Functions, Interscience Publishers Inc.

  14. Schwartz, S. C. (1967). Estimation of probability density by an orthogonal series,Ann. Math. Statist.,38, 1261–1265.

    Article  MathSciNet  Google Scholar 

  15. Stone, C. J. (1980). Optimal rates of convergence for non-parametric estimators,Ann. Statist.,8, 1348–1360.

    Article  MathSciNet  Google Scholar 

  16. Szegö, G. (1959). Orthogonal Polynomials,Amer. Math. Soc. Coll. Publ.

  17. Tapia, R. A. and Thompson, J. R. (1978).Nonparametric Probability Density Estimation, The John Hopkins University Press, Baltimore.

    MATH  Google Scholar 

  18. Tarter, M. and Kronmal, R. (1970). On multivariate density estimates based on orthogonal expansions,Ann. Math. Statist.,41, 718–722.

    Article  MathSciNet  Google Scholar 

  19. Wahba, G. (1975). Optimal convergence properties of varaible knot, kernel and orthogonal series methods for density estimation,Ann. Statist.,3, 15–29.

    Article  MathSciNet  Google Scholar 

  20. Walter, G. G. (1977). Properties of Hermite series estimation of probability density,Ann. Statist.,5, 1258–1264.

    Article  MathSciNet  Google Scholar 

  21. Watson, G. S. (1964). Smooth regression analysis,Sankhya, A,26, 359–372.

    MathSciNet  MATH  Google Scholar 

  22. Zygmund, A. (1959).Trigonometric series II, Cambridge University Press.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Greblicki, W., Pawlak, M. Fourier and Hermite series estimates of regression functions. Ann Inst Stat Math 37, 443–454 (1985). https://doi.org/10.1007/BF02481112

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02481112

Key words and phrases

Navigation