Skip to main content
Log in

Asymptotic theory for estimating the parameters of a Lévy process

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Summary

We consider consistency and asymptotic normality of maximum likelihood estimators (MLE) for parameters of a Lévy process of the discontinuous type. The MLE are based on a single realization of the process on a given interval [0,t]. Depending on properties of the Lévy measure we either consider the MLE corresponding to jumps of size greater than ε and, keepingt fixed, we let ε tend to 0, or we consider the MLE corresponding to the complete information of the realization of the process on [0,t] and lett tend to ∞. The results of this paper improve in both generality and rigor previous asymptotic estimation results for such processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akritas, M. G. (1978). Contiguity of probability measures associated with continuous time stochastic processes, Ph.D. dissertation, University of Wisconsin-Madison.

  2. Akritas, M. G. (1981). Rates of convergence of estimates for Lévy processes, in preparation.

  3. Akritas, M. G. and Johnson, R. A. (1981). Asymptotic inference in Lévy processes of the discontinuous type,Ann. Statist.,9, 604–614.

    Article  MathSciNet  Google Scholar 

  4. Basawa, I. V. and Brockwell, P. J. (1978). Inference for gamma and stable processes,Biometrika,65, 129–133.

    Article  MathSciNet  Google Scholar 

  5. Breiman, L. (1968).Probability, Addison-Wesley.

  6. Brockett, P. L., Hudson, W. N. and Tucker, H. G. (1978). The distribution of the likelihood ratio for additive processes,Notices Amer. Math. Soc., A-149 (to appear inJ. Multivariate Anal.).

  7. Brockwell, P. J. and Chung, K. L. (1975). Emptiness times of a dam with stable input and general release function,J. Appl. Prob.,12, 212–217.

    Article  MathSciNet  Google Scholar 

  8. Chung, K. L. (1974).A Course in Probability Theory, Academic Press.

  9. Fama, E. F. (1965). The behavior of stock market prices,J. of Business of the University of Chicago,XXXVIII, 38–105.

    Google Scholar 

  10. Feller, W. (1971).An Introduction to Probability Theory and its Applications II, John Wiley & Sons.

  11. Fristedt, B. (1972). Sample functions of stochastic processes with stationary, independent increments,Tech. Rep. No. 1166, M.R.C., University of Wisconsin-Madison.

  12. Frost, P. (1972). Optimal estimation and detection for conditionally independent increment processes,1972 IEEE International Symposium on Information Theory, Asilomar, Pacific Grove.

  13. Gnedenko, B. V. (1963).The Theory of Probability, Chelsea.

  14. Huber, P. J. (1967). The behavior of maximum likelihood estimators under nonstandard conditions,Proc. 5th Berkeley Symp. Math. Statist. Prob.,1, 221–233.

    Google Scholar 

  15. Inagaki, N. (1973). Asymptotic relations between the likelihood estimating function and the maximum likelihood estimator,Ann. Inst. Statist. Math.,25, 1–26.

    Article  MathSciNet  Google Scholar 

  16. Moran, P. A. P. (1959).The Theory of Storage, Methuen, London.

    MATH  Google Scholar 

  17. Newman, C. M. (1973). On the orthogonality of independent increment processes,Topics of Probability Theory (eds. D. W. Stroock and S. R. S. Varathan), Courant Institute of Math. Science, N.Y.

    MATH  Google Scholar 

  18. Rao, B. L. S. Prakasa (1972). Maximum likelihood estimation for Markov processes,Ann. Inst. Statist. Math.,24, 333–345.

    Article  MathSciNet  Google Scholar 

  19. Rubin, H. (1956). Uniform convergence of random functions with applications to statistics,Ann. Math. Statist.,27, 200–203.

    Article  MathSciNet  Google Scholar 

  20. Rubin, H. and Tucker, H. G. (1959). Estimating the parameters of a differential process,Ann. Math. Statist.,30, 641–658.

    Article  MathSciNet  Google Scholar 

  21. Segall, A. and Kailath, T. (1975). Radon-Nikodym derivatives with respect to measures induced by discontinuous independent increment processes,Ann. Prob.,3, 449–464.

    Article  MathSciNet  Google Scholar 

  22. Wald, A. (1949). Note on the consistency of the maximum likelihood estimate,Ann. Math. Statist.,20, 595–601.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Akritas, M.G. Asymptotic theory for estimating the parameters of a Lévy process. Ann Inst Stat Math 34, 259–280 (1982). https://doi.org/10.1007/BF02481026

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02481026

Keywords

Navigation