Skip to main content
Log in

Mechanical behavior of RC beams reinforced by externally bonded CFRP sheets

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

It is technologically possible to strengthen steel reinforced concrete structures by bonding externally carbon epoxy sheets. Few results exist on the mechanical behavior of strengthened structures subjected to service loads. Consequently, large safety factors are taken into account, most of all concerning the limitation of steel stresses. In order to provide a more accurate characterization of their serviceability, beams are investigated by utilizing a full-field optical measurement technique. The results lead to an original analysis of cracks growth and opening in unstrengthened and strengthened beams.

Résumé

Il est technologiquement possible de renforcer des ouvrages en béton armé présentant des comportements pethologiques préoccupants en stratifiant les faces extérieures de l'ouvrage avec des matériaux composites carbone-époxy. Le manque de connaissance sur le comportement en service des ouvrages renforcés nécessite la prise en compte d'importants coefficients de sécurité notamment sur la contrainte admissible des aciers. Dans l'objectif d'étudier le comportement de poutres renforcées et sollicitées sous charge de service. l'application d'une technique d'extensométrie optique au cas du béton armé est réalisée. Dans cette étude, l'état de fissuration de poutres renforcées ou non renforcées est particulièrement étudié.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A's:

total area of compression rebar section (mm2)

As:

total tension steel section (mm2)

Af :

total area of carbon fiber section at the bottom of the beam (mm2)

A,B:

coefficient

b:

beam width (mm)

d:

effective height of member section (mm)

I(x,y) :

light intensity reflected

I 0 :

local intensity bias

I:

sectional moment of inertia (mm4)

frgn :

2π-periodic continuous function

f x :

spatial frequency of the grid lines

k 1,k2 :

coefficients taking into account steel friction and stress (0.8 and 0.5)

M:

moment (N.mm)

N :

equivalent young modulus ratio (Steel versus concrete, Es/Ee)

n f :

equivalent young modulus ratio (composite versus concrete, Ef/Ec)

(x,y) :

position of pointM in the Cartesian reference frame

R 0 :

local rotation at the origin

S rm :

average crack spacing for the final load (80 mm in our case)

U x(x,y) :

x component of the displacement field over the lateral surface of the beam

U 0 :

horizontal displacement at the origin:U 0=Ux(0,0)

Wk :

crack width (mm)

Z:

distance from the bottom of the beam to the neutral axis (mm)

α:

coefficient

β,β12 :

design coefficient

ε m :

mean strain taking into account tension stiffening and shrinkage effects

ε m0 :

residual strain when structure unloaded

φ\(\left( {\vec R} \right)\) :

phase of the function frgn

φ:

bar size (mm)

φ:

contrast

σ s :

stress in steel rebars, calculated on the basis of the current cracked section (MPa)

σ sr :

the stress in steel rebars, calculated for a cracked section with loading conditions corresponding to the first crack occurrence (MPa)

σ s,f :

steel stress with external bonded FRP

ρ r :

effective reinforcement ratio

χ:

average curvature

References

  1. Meier, U., Deuring, M., Meier, H. and Schwegler, G., ‘Strengthening of structures with CFRP laminates: research and applications in Switzerland’, Proceedings of ACMBS'1, Canada, (1992) 243–251.

  2. Varastehpour, H. and Hamelin, P., ‘Analysis and study of failure mechanism of RC beam strengthened with FRP plates’, Proceeding of ACMBS'2, (1996) 527–536.

  3. ACI committee 440, ‘Guidelines for the selection, design, and installation of fiber reinforced polymer (FRP) systems for external strengthening of concrete structures’, 2000.

  4. ISIS Canada, ‘Strengthening reinforced concrete structures with externally bonded fibre reinforced polymers’, Canadian network of centers of excellence on intelligent sensing for innovative structures, 2000, 4.1–4.10.

  5. Eurocode 2 Editorial group, ‘Design of concrete structures’, Eurocode 2 Editorial Group, 4–77, 4–81, 1991.

  6. Avril, S., Ferrier, E., Hamelin, P., Surrel, Y. and Vautrin, A., ‘Reinforced concrete beams by composite materials: optical method for evaluation’, Proceedings of the International Conference on FRP Composites in Civil Engineering, CICE 2001, Ed. J.G. Teng Elsevier, 2001, Vol. 1, p. 449–456.

    Google Scholar 

  7. Surrel, Y., ‘Moiré and grid methods in optics: a signal-processing approach’,Vol SPIE 2342 (1994) 213–220.

    Google Scholar 

  8. Surrel, Y., ‘Design of algorithms for phase measurements by the use of phase stepping’,Applied Optics,35 (1) (1996) 51–60.

    Article  Google Scholar 

  9. Surrel, Y., ‘Fringe analysis’, in ‘Photomechanics’, (P.K. Rastogi Ed., 1999) 57–104.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial Note Prof. Patrice Hamelin is a RILEM Senior Member.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrier, E., Avril, S., Hamelin, P. et al. Mechanical behavior of RC beams reinforced by externally bonded CFRP sheets. Mat. Struct. 36, 522–529 (2003). https://doi.org/10.1007/BF02480829

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480829

Keywords

Navigation