Skip to main content
Log in

On the uniform complete convergence of estimates for multivariate density functions and regression curves

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Let (X1,Y1),...(Xn,Yn) be a random sample from the (k+1)-dimensional multivariate density functionf*(x,y). Estimates of thek-dimensional density functionf(x)=∫f*(x,y)dy of the form

$$\hat f_n (x) = \frac{1}{{nb_1 (n) \cdots b_k (n)}}\sum\limits_{i = 1}^n W \left( {\frac{{x_1 - X_{i1} }}{{b_1 (n)}}, \cdots ,\frac{{x_k - X_{ik} }}{{b_k (n)}}} \right)$$

are considered whereW(x) is a bounded, nonnegative weight function andb1(n),...,bk(n) and bandwidth sequences depending on the sample size and tending to 0 asn→∞. For the regression function

$$m(x) = E(Y|X = x) = \frac{{h(x)}}{{f(x)}}$$

whereh(x)=∫y(f)*(x, y)dy , estimates of the form

$$\hat h_n (x) = \frac{1}{{nb_1 (n) \cdots b_k (n)}}\sum\limits_{i = 1}^n {Y_i W} \left( {\frac{{x_1 - X_{i1} }}{{b_1 (n)}}, \cdots ,\frac{{x_k - X_{ik} }}{{b_k (n)}}} \right)$$

are considered. In particular, unform consistency of the estimates is obtained by showing that\(||\hat f_n (x) - f(x)||_\infty \) and\(||\hat m_n (x) - m(x)||_\infty \) converge completely to zero for a large class of “good” weight functions and under mild conditions on the bandwidth sequencesbk(n)'s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Billingsley, P. (1968).Convergence of Probability Measures, Wiley, New York.

    MATH  Google Scholar 

  2. Cacoullos, T. (1966). Estimation of multivariate density,Ann. Inst. Statist. Math.,18, 179–189.

    Article  MathSciNet  Google Scholar 

  3. Chow, Y. S. (1966). Some convergence theorems for independent random variable,Ann. Math. Statist.,37, 1482–1493.

    Article  MathSciNet  Google Scholar 

  4. Epanechinkov, V. A. (1969). Nonparametric estimates of multivariate probability density,Theory Prob. Appl.,14, 153–158.

    Article  Google Scholar 

  5. Nadaraya, E. A. (1964). On estimating regression,Theory Prob. Appl.,9, 141–142.

    Article  Google Scholar 

  6. Nadaraya, E. A. (1970). Remarks on nonparametric estimates for density function and regression curve,Theory Prob. Appl.,15, 134–137.

    Article  Google Scholar 

  7. Rosenblatt, M. (1971). Curve estimates,Ann. Math. Statist.,42, 1815–1842.

    Article  MathSciNet  Google Scholar 

  8. Taylor, R. L. and Cheng, K. F. (1978). On the uniform complete convergence of density function estimates,Ann. Inst. Statist. Math.,30, A, 397–406.

    Article  MathSciNet  Google Scholar 

  9. Watson, G. S. (1964). Smooth regression analysis,Sankhyã, A,26, 359–372.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by National Institute of Environmental Health Sciences Under Grant 5T32 ES07011.

For this author, revisions made while supported by the Air Force Office of Scientific Research under Contract Number F49620-79-C-0140.

About this article

Cite this article

Cheng, K.F., Taylor, R.L. On the uniform complete convergence of estimates for multivariate density functions and regression curves. Ann Inst Stat Math 32, 187–199 (1980). https://doi.org/10.1007/BF02480324

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480324

Key words and phrases

AMS Classification Number

Navigation