Skip to main content
Log in

Mechanism of sodium chloride reabsorption in the ascending thin limb of Henle's loop

  • Review Article [Oshima Award]
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Summary

The ascending thin limb of Henle's loop has been one of the most mysterious nephron segments because of the unique characteristics of its NaCl and water transport systems. The ascending thin limb is essentially impermeable to water under all circumstances. The majority of luminal sodium ions (Na+) are reabsorbed across the shallow tight junction between the ascending thin limb cells, as the apical membrane of the ascending thin limb is impermeable to Na+. Intracellular Na+ activity is maintained at a low level by a ouabain-sensitive Na+/K+-ATPase. Intracellular pH is maintained by an amiloridesensitive sodium ion-hydrogen ion (Na+/H+) antiporter, which depends on calmodulin. Intracellular calcium ion (Ca2+) activity is maintained at a low level by a calmodulin-sensitive Ca2+ pump and a dihydropyridine-sensitive Ca2+ channel. In the ascending thin limb, Cl is reabsorbed across the Cl channels in both the luminal and basolateral membranes. This channel is sensitive to various anion transport inhibitors. Chloride ion transport in the ascending thin limb is also sensitive to intra- and extracellular pH. Physiologic regulation of the Cl channel by the vasopressin V2 receptor has been identified. Our studies have elucidated the precise mechanism of NaCl transport in the ascending thin limb, and suggest that this countercurrent exchange system in the ascending thin limb is not effected by any energy-dependent process, but occurs as passive simple diffusion of Na+ via tight junctions as a result of facilitated transport of Cl across the cell membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gottshalk CW. Renal tubular function: lessons from micropuncture. Harvey Lecture 1963;58:99–124.

    Google Scholar 

  2. Marsh DJ, Solomon S. Analysis of electrolyte movement in thin Henle's loops of hamster papilla. Am J Physiol 1965;208:1119–1128.

    PubMed  CAS  Google Scholar 

  3. Marsh DJ. Solute and water flows in thin limb of Henle's loop in the hamster kidney. Am J Physiol 1970;218:824–831.

    PubMed  CAS  Google Scholar 

  4. Imai M, Kokko JP. Sodium chloride, urea, and water transport in the thin ascending limb of Henle. Generation of osmotic gradients by passive diffusion of solutes. J Clin Invest 1974;53:393–402.

    PubMed  CAS  Google Scholar 

  5. Imai M. Function of the thin ascending limb of Henle of rats and hamsters perfused in vitro. Am J Physiol 1977;232:F201-F209.

    PubMed  CAS  Google Scholar 

  6. Gottshalk CW, Mylle M. Micropuncture study of the mammalian urinary concentrating mechanism. Am J Physiol 1959;196:927–936.

    Google Scholar 

  7. Windhager EE. Electrophysiological study of renal papilla of golden hamsters. Am J Physiol 1964;206:694–700.

    PubMed  CAS  Google Scholar 

  8. Marsh DJ, Martin CM. Origin of electrical PD's in hamster thin ascending limbs of Henle's loop. Am J Physiol 1977;232:F348-F357.

    PubMed  CAS  Google Scholar 

  9. Hogg RJ, Kokko JP. Comparison between the electrical potential profile and the chloride gradients in the thin limbs of Henle's loop in rats. Kidney Int 1978;14:428–436.

    PubMed  CAS  Google Scholar 

  10. Burg M, Grantham J, Abramow M, Orloff J. Preparation and study of fragments of single rabbit nephron. Am J Physiol 1966;210:1293–1298.

    PubMed  CAS  Google Scholar 

  11. Imai M, Kokko JP. Mechanism of sodium and chloride transport in the thin ascending limb of Henle. J Clin Invest 1976;58:1054–1060.

    PubMed  CAS  Google Scholar 

  12. Koyama S, Yoshitomi K, Imai M. Effect of protamine on ion conductance of ascending thin limb of Henle's loop from hamsters. Am J Physiol 1991;261:F593-F599.

    PubMed  CAS  Google Scholar 

  13. Stephenson JL, Jen JF, Wang H, Tewarson RP. Convective uphill transport of NaCl from ascending thin limb of loop of Henle. Am J Physiol 1995;268:F680–692.

    PubMed  CAS  Google Scholar 

  14. Beck F, Dörge A, Rick R, Thurau K. Intra- and extracellular element concentration of rat renal papilla in antidiuresis. Kidney Int 1984;25:397–403.

    PubMed  CAS  Google Scholar 

  15. Beck F, Dörge A, Rick R, Thurau K. Osmoregulation of renal papillary cells. Pflugers Arch 1985;405:S28–32.

    Article  Google Scholar 

  16. Katz AI, Doucet A, Morel F. Na−K-ATPase activity along the rabbit, rat, and mouse nephron. Am J Physiol 1979;237:F114-F120.

    PubMed  CAS  Google Scholar 

  17. Terada Y, Knepper MA. Na+−K+-ATPase activities in renal tubule segments of rat inner medulla. Am J Physiol 1989;256:F218-F223.

    PubMed  CAS  Google Scholar 

  18. Harootunian AT, Kao JP, Eckert BK, Tsien RY. Fluorescence ratio imaging of cytosolic free Na+ in individual fibroblasts and lymphocytes. J Biol Chem 1989;264:19458–19467.

    PubMed  CAS  Google Scholar 

  19. Kondo Y, Abe K, Igarashi Y, Kudo K, Tada K, Yoshinaga K. Direct evidence for the absence of active Na+ reabsorption in hamster ascending thin limb of Henle's loop. J Clin Invest 1993;91:5–11.

    PubMed  CAS  Google Scholar 

  20. Takahashi N, Kondo Y, Fujiwara I, Ito O, Igarashi Y, Abe K. Characterization of Na+ transport across the cell membranes of the ascending thin limb of Henle's loop. Kidney Int 1995;47:789–794.

    PubMed  CAS  Google Scholar 

  21. Fujiwara I, Kondo Y, Igarashi Y, Inoue CN, Takahashi N, Tada K, Abe K. Amiloride-sensitive Na+/H+ antiporter in basolateral membrane of hamster ascending thin limb of Henle's loop. Am J Physiol 1995;268:F410-F415.

    PubMed  CAS  Google Scholar 

  22. Kondo Y, Imai M. Effect of glutaraldehyde on renal tubular function. II. Selective inhibition of Cl transport in the hamster thin ascending limb of Henle's loop. Pflugers Arch 1987;408:484–490.

    Article  PubMed  CAS  Google Scholar 

  23. Kondo Y, Yoshitomi K, Imai M. Effects of anion transport inhibitors and ion substitution on Cl transport in TAL of Henle's loop. Am J Physiol 1987;253:F1206-F1215.

    PubMed  CAS  Google Scholar 

  24. Kondo Y, Yoshitomi K, Imai M. Effect of pH on Cl transport in TAL of Henle's loop. Am J Physiol 1987;253:F1216-F1222.

    PubMed  CAS  Google Scholar 

  25. Kondo Y, Yoshitomi K, Imai M. Effect of Ca2+ on Cl transport in thin ascending limb of Henle's loop. Am J Physiol 1988;254:F232-F239.

    PubMed  CAS  Google Scholar 

  26. Imai M, Kondo Y, Koseki C, Yoshitomi K. Dual effect ofN-ethylmaleimide on Cl transport across the thin ascending limb of Henle's loop. Pflugers Arch 1988;411:520–528.

    Article  PubMed  CAS  Google Scholar 

  27. Isozaki T, Yoshitomi K, Imai M. Effects of Cl transport inhibitors on Cl permeability across hamster ascending thin limb. Am J Physiol 1989;257:F92-F98.

    PubMed  CAS  Google Scholar 

  28. Yoshitomi K, Kondo Y, Imai M. Evidence for conductive Cl pathways across the cell membranes of the thin ascending limb of Henle's loop. J Clin Invest 1988;82:866–871.

    PubMed  CAS  Google Scholar 

  29. Uchida S, Sasaki S, Furukawa T, Hiraoka M, Imai T, Hirata Y, Marumo F. Molecular cloning of a chloride channel that is regulated by dehydration and expressed predominantly in kidney medulla J Biol Chem 1993;268:3821–3824.

    PubMed  CAS  Google Scholar 

  30. Paradiso AM, Tsien RY, Machen TE. Na+−H+ exchange in gastric glands as measured with a cytoplasmictrapped, fluorescent pH indicator. Proc Natl Acad Sci USA 1984;81:7436–7440.

    Article  PubMed  CAS  Google Scholar 

  31. Tse CM, Ma AI, Yang VW, Watson AJ, Levine S, Montrose MH, Potter J, Sardet C, Pouyssegur J, Donowitz M. Molecular cloning and expression of a cDNA encoding the rabbit ileal villus cell basolateral membrane Na+/H+ exchanger. EMBO J 1991;10:1957–1967.

    PubMed  CAS  Google Scholar 

  32. Biemesderfer D, Reilly RF, Exner M, Igarashi P, Aronson PS. Immunocytochemical characterization of Na+−H+ exchanger isoform NHE-1 in rabbit kidney. Am J Physiol 1992;263:F833-F840.

    PubMed  CAS  Google Scholar 

  33. Biemesderfer D, Pizzonia J, Abu-Alfa A, Exner M, Reilly R, Igarashi P, Aronson PS. NHE3: a Na+/H+ exchanger isoform of renal brush border. Am J Physiol 1993;265:F736-F742.

    PubMed  CAS  Google Scholar 

  34. Bookstein C, Musch MW, DePaoli A, Xie Y, Villereal M, Rao MC, Chang EB. A unique sodium-hydrogen exchange isoform (NHE-4) of the inner medulla of the rat kidney is induced by hyperosmolarity. J Biol Chem 1994;269:29704–29709.

    PubMed  CAS  Google Scholar 

  35. Soleimani M, Singh G, Bizal GL, Gullans SR, McAteer JA. Na+/H+ exchanger isoforms NHE-2 and NHE-1 in inner medullary collecting duct cells. Expression, functional localization, and differential regulation. J Biol Chem 1994;269:27973–27978.

    PubMed  CAS  Google Scholar 

  36. Yun CH, Tse CM, Nath SK, Levine SA, Brant SR, Donowitz M. Mammalian Na+/H+ exchanger gene family: structure and function studies. Am J Physiol 1995;269:G1-G11.

    PubMed  CAS  Google Scholar 

  37. Amemiya M, Loffing J, Lotscher M, Kaissling B, Alpern RJ, Moe OW. Expression of NHE-3 in the apical membrane of rat renal proximal tubule and thick ascending limb. Kidney Int 1995;48:1206–1215.

    PubMed  CAS  Google Scholar 

  38. Borensztein P, Froissart M, Laghmani K, Bichara M, Paillard M. RT-PCR analysis of Na+/H+ exchanger mRNAs in rat medullary thick ascending limb. Am J Physiol 1995;268:F1224-F1228.

    PubMed  CAS  Google Scholar 

  39. Takaichi K, Balkovetz DF, Van Meir E, Warnock DG. Cytosolic pH sensitivity of an expressed human NHE-1 Na+−H+ exchanger. Am J Physiol 1993;264:C944-C950.

    PubMed  CAS  Google Scholar 

  40. Wakabayashi S, Bertrand B, Ikeda T, Pouyssegur J, Shigekawa M. Mutation of calmodulin-binding site renders the Na+/H+ exchanger (NHE1) highly H+-sensitive and Ca2+ regulation-defective. J Biol Chem 1994;269:13710–13715.

    PubMed  CAS  Google Scholar 

  41. Levine SA, Nath SK, Yun CH, Yip JW, Montrose M, Donowitz M, Tse CM. Separate C-terminal domains of the epithelial specific brush border Na+/H+ exchanger isoform NHE3 are involved in stimulation and inhibition by protein kineses/growth factors. J Biol Chem 1995;270:13716–13725.

    Article  PubMed  CAS  Google Scholar 

  42. Takahashi N, Kondo Y, Ito O, Igarashi Y, Omata K, Abe K. Vasopressin stimulates Cl transport in ascending thin limb of Henle's loop in hamster. J Clin Invest 1995;95:1623–1627.

    PubMed  CAS  Google Scholar 

  43. Kinne-Saffran E, Kinne R. Localization of a calcium-stimulated ATPase in the basal-lateral plasma membranes of the proximal tubule of rat kidney cortex. J Membr Biol 1974;17:263–274.

    Article  PubMed  CAS  Google Scholar 

  44. Doucet A, Katz AI. High-affinity Ca−Mg-ATPase along the rabbit nephron. Am J Physiol 1982;242:F346-F352.

    PubMed  CAS  Google Scholar 

  45. Ghijsen W, Gmaj P, Murer H. Ca2+-stimulated, Mg2+-independent ATP hydrolysis and the high affinity Ca2+-pumping ATPase. Two different activities in rat kidney basolateral membranes. Biochim Biophys Acta 1984;778:481–488.

    Article  PubMed  CAS  Google Scholar 

  46. Van Heeswijk MP, Geertsen JA, van Os CH. Kinetic properties of the ATP-dependent Ca2+ pump and the Na+/Ca2+ exchange system in basolateral membranes from rat kidney cortex. J Membr Biol 1984;79:19–31.

    Article  PubMed  Google Scholar 

  47. Tsukamoto Y, Suki WN, Liang CT, Sacktor B. Ca2+-dependent ATPases in the basolateral membrane of rat kidney cortex. J Biol Chem 1986;261:2718–2724.

    PubMed  CAS  Google Scholar 

  48. Bacskai BJ, Friedman PA. Activation of latent Ca2+ channels in renal epithelial cells by parathyroid hormone. Nature 1990;347:388–391.

    Article  PubMed  CAS  Google Scholar 

  49. Gesek FA, Friedman PA. Mechanism of calcium transport stimulated by chlerothiazide in mouse distal convoluted tubule cells. J Clin Invest 1992;90:429–438.

    PubMed  CAS  Google Scholar 

  50. Gesek FA, Friedman PA. On the mechanism of parathyroid hormone stimulation of calcium uptake by mouse distal convoluted tubule cells. J Clin Invest 1992;90:749–758.

    Article  PubMed  CAS  Google Scholar 

  51. Friedman PA, Gesek FA. Calcium transport in renal epithelial cells. Am J Physiol 1993;264:F181-F198.

    PubMed  CAS  Google Scholar 

  52. Tsien RW, Ellinor PT, Horne WA. Molecular diversity of voltage-dependent Ca2+ channels. Trends in Pharmacol Sci 1991;12:349–354.

    Article  CAS  Google Scholar 

  53. Di Virgilio F, Lew PD, Andersson T, Pozzan T. Plasma membrane potential modulates chemotactic peptidestimulated cytosolic free Ca2+ changes in human neutrophils. J Biol Chem 1987;262:4574–4579.

    PubMed  Google Scholar 

  54. Sarkadi B, Tordai A, Gardos G. Membrane depolarization selectively inhibits receptor-operated calcium channels in human T (Jurkat) lymphoblasts. Biochim Biophys Acta 1990;1027:130–140.

    Article  PubMed  CAS  Google Scholar 

  55. Kondo Y, Kudo K, Igarashi Y, Kuba Y, Arima S, Tada K, Abe K. Functions of ascending thin limb of Henle's loop with special emphasis on mechanism of NaCl transport. Tohoku J Exp Med 1992;166:75–84.

    Article  PubMed  CAS  Google Scholar 

  56. Imai M, Yoshitomi K, Taniguchi J, Suzuki M. Regulation of Cl conductance in the thin ascending limb of Henle's loop. Jap J Physiol 1994;44:S261-S268.

    CAS  Google Scholar 

  57. Bichet DG. Molecular and cellular biology of vasopressin and oxytocin receptors and action in the kidney. Curr Opin Nephrol Hypertens 1994;3:46–53.

    PubMed  CAS  Google Scholar 

  58. Imai M, Kusano E. Effects of arginine vasopressin on the thin ascending limb of Henle's loop of hamsters. Am J Physiol 1982;243:F167-F172.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kondo, Y. Mechanism of sodium chloride reabsorption in the ascending thin limb of Henle's loop. Clin Exper Neph 1, 67–75 (1997). https://doi.org/10.1007/BF02479904

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02479904

Key words

Navigation