Skip to main content
Log in

The distribution of a truncated linear difference between independent chi-square variates

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Lebedev, N. N. (1965).Special Functions and Their Applications, Prentice-Hall, Englewood Cliffs, New Jersey.

    MATH  Google Scholar 

  2. Press, S. J. (1966). Linear combinations of non-central chi-square variates,Ann. Math. Statist.,37, 480–487.

    MATH  MathSciNet  Google Scholar 

  3. Slater, L. J. (1960).Confluent Hypergeometric Functions, Cambridge University Press, London.

    MATH  Google Scholar 

  4. Slater, L. J. (1965). Confluent hypergeometric functions,Handbook of Mathematical Functions (M. Abramowitz and I. A. Stegun, eds.), Dover Publications, New York.

    Google Scholar 

  5. Wang, Y. Y. (1967). A comparison of several variance component estimators,Biometrika,54, 301–305.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Harville, D.A. The distribution of a truncated linear difference between independent chi-square variates. Ann Inst Stat Math 25, 533–548 (1973). https://doi.org/10.1007/BF02479397

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02479397

Keywords

Navigation