Skip to main content
Log in

Non-linear excitation theory: Non-accommodative, sub-threshold effects

  • Published:
The bulletin of mathematical biophysics Aims and scope Submit manuscript

Abstract

The standard two factor excitation theories should be called “preexcitation” theories since they apply only to those events occurring just up to excitation. A true phenomenological excitation theory which describes thewhole excitation cycle must involve non-linear equations. The nature of these non-linearities is suggested by B. Katz's subthreshold response data. From this data is constructed a “local phenomenological characteristic” which is analogous to the current-voltage characteristic of a non-linear electrical or mechanical system capable of displaying relaxation oscillations. Excitation by constant currents is shown to occur where the slope of the characteristic changes sign. The variation of the time constant of excitation with degree of response, explained by W. A. H. Rushton in terms of a liminal length, is described here in purely formal terms. The theory as presented explicity treats only those events in the excitation cycle up to and a little beyond excitation; the complete excitation cycle (including recovery and repetition) is mentioned as being amenable to mathematical treatment by an extension of the present theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Arvanitaki, A. 1939. “Recherches sur le Réponse Oscillatoire Locale de l'Axone Géant Isole de Sepia.”Arch. Int. Physiol.,49, 209–256.

    Google Scholar 

  • Blair, H. A., 1936. “The Kinetics of the Excitatory Process.”Cold Spring Harbor Symp.,4, 63–72.

    Google Scholar 

  • Blinks, L. R. and R. K. Skow. 1940. “The Electrical Capacity of Valonia.”Jour. Gen. Physiol.,24, 247–261.

    Article  Google Scholar 

  • Cole, K. S. and H. J. Curtis. 1938. “Electric Impedance of Nitella During Activity.”Jour. Gen. Physiol.,22, 37–64.

    Article  Google Scholar 

  • Cole, K. S., and H. J. Curtis. 1941. “Membrane Potential of the Squid Giant Axon During Current Flow.”Jour. Gen. Physiol.,24, 551–563.

    Article  Google Scholar 

  • Cole, K. S., 1941. “Rectification and Inductance in the Squid Giant Axon.”Jour. Gen. Physiol.,25, 29–51.

    Article  Google Scholar 

  • le Corbellier, Ph. 1931.Les Systèmes Autoentretenus et les Oscillations de Relaxation. Paris: Hermann.

    Google Scholar 

  • Herrenden-Harker, G. F. 1940. “Relaxation Oscillations.”Am. Jour. Physics.,8, 1–22.

    Article  Google Scholar 

  • Hodgkin, A. L., 1938. “Subthreshold Potentials in a Crustacean Nerve Fiber.”Proc. Roy. Soc. B.,126, 87–121.

    Google Scholar 

  • Householder, A. S. 1939. “Studies in the Mathematical Theory of Excitation.”Bull. Math. Biophysics,1, 129–141.

    Article  Google Scholar 

  • Hill, A. V. 1936. “Excitation and Accommodation in Nerve.”Proc. Roy. Soc. B.,119, 305–355.

    Google Scholar 

  • Katz, B., 1936. “Multiple Response to Constant Current in Frog's Medullated Nerve.”Jour. Physiol.,88, 239–255.

    Google Scholar 

  • Katz, B., 1937. “Experimental Evidence for a Non-Conducted Response of Nerve to Subthreshold Stimulation.”Proc. Roy. Soc. B.,124, 244–276.

    Google Scholar 

  • Katz, B. 1939.Electric Excitation in Nerve. London: Oxford University Press.

    Google Scholar 

  • Monnier, A. 1934.L'excitation Électrique des Tissus. Paris: Hermann.

    Google Scholar 

  • Monnier, A., and G. Coppée. 1939. “Nouvelles Recherches sur la Resonance des Tissus Excitables I. Relation entre la Rhythmicité de la Réponse Nerveuse et la Résonance.”Arch. Int. Physiol.,48, 129–179.

    Google Scholar 

  • Pumphrey, R. J., O. H. Schmitt, and J. Z. Young. 1940. “Correlation of Local Excitability with Local Physiological Response in the Giant Axon of the Squid (Loligo).”Jour. Physiol.,98, 47–72.

    Google Scholar 

  • Rosenberg, H., 1937. “Electrotonus and Excitation in Nerve.”Proc. Roy. Soc. B.,124, 308–336.

    Google Scholar 

  • Rashevsky, N. 1933. “Outline of a Physico-Mathematical Theory of Excitation and Inhibition.”Protoplasma,20, 42–56.

    Google Scholar 

  • Rushton, W. A. H., 1932. “A New Observation in the Excitation of Nerve and Muscle.”Jour. Physiol.,75, 16–17.

    Google Scholar 

  • Rushton, W. A. H., 1937. “Initiation of the Propagated Disturbance.”Proc. Roy. Soc. B.,124, 210–243.

    Article  Google Scholar 

  • Schaefer, H., 1940.Elektrophysiologie. Vienna: F. Deuticke.

    Google Scholar 

  • Young, G., 1941. “On Reinforcement and Interference Between Stimuli.”Bull. Math. Biophysics,3, 5–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinberg, A.M. Non-linear excitation theory: Non-accommodative, sub-threshold effects. Bulletin of Mathematical Biophysics 4, 33–44 (1942). https://doi.org/10.1007/BF02477353

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02477353

Keywords

Navigation