Skip to main content
Log in

Justification and refinements of model B3 for concrete creep and shrinkage 1. statistics and sensitivity

  • RILEM Technical Committees
  • 107-GCS Guidelines for the Formulation of Creep and Shrinkage Prediction Models
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Model B3 for creep and shrinkage prediction in the design of concrete structures, presented as a RILEM Recommendation inMater Struct.28 (1995) 357–365, is calibrated by a computerized data bank comprising practically all the relevant test data obtained in various laboratories throughout the world. The coefficients of variation of deviations of the model from the data are distinctly smaller than for the latest CEB model, and much smaller than for the previous ACI model (which was developed in the mid-1960's). The effect of concrete composition and design strength on the model parameters is identified as the main source of error. The model is simpler than the previous models (BP and BP-KX) developed at Northwestern University, yet it has comparable accuracy and is more rational.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bažant, Z. P. and Baweja, S., ‘Creep and shinkage characterization for design of concrete structures-Model B3′, Structural Engineering Report 94-10/603c (Northwestern University, 1994).

  2. Bažant, Z. P. and Panula, L., ‘Practical prediction of time-dependent deformations of concrete’, Parts I–VIMater. Struct. 11 (1978) 307–316. 317–328. 425–434;12 (1979) 169–183.

    Google Scholar 

  3. Bažant, Z. P. and Kim, Joong-Koo., ‘Improved prediction model for time-dependent deformations of concrete’, ‘Part 1-Shrinkage’,-ibid.Mater. Struct. 24 (1991) 327–345; ’Part 2-Basic creep’,Ibid. Mater. Struct. 24 (1991) 409–442; ‘Part 3-Creep at drying’,Ibid. Mater. Struct. 24 (1991). 21–28; ‘Part 4-Temperature effects’,Ibid. Mater. Struct. 25 (1992) 84–94; ‘Part 5-Cyclic load and cyclic humidity’,Ibid. Mater. Struct. 25 (1992).

    Google Scholar 

  4. Bažant, Z. P., Panula, L., Kim, Joong-Koo. and Xi, Y., ‘Improved prediction model for time-dependent deformations of concrete: Part 6-Simplified code-type formulation’,-Ibib. 25 (1992) 219–223.

    Google Scholar 

  5. RILEM TC-107, ‘Guidelines for characterizing concrete creep and shrinkage in structural design codes or recommendations’,Mater. Struct. 28 (1995) 52–55; (b) RILEM TC 69, ‘Conclusions for structural analysis and for formulation of standard design recommendations’, in ‘Mathematical Modeling of Creep and Shrinkage of Concrete’, edited by Z. P. Bažant, Chap. 6 (Wiley, New York, 1988); reprinted inMater. Struct. 20 (1987) 395–398; and inACI Mater. J. 84 (1987) 578–581

  6. Bažant, Z. P. and Baweja, S., ‘Creep and shrinkage model for analysis and design of concrete structures’, RILEM Recommendation,Mater. Struct. 28 (1995) 357–365.

    Google Scholar 

  7. Bažant, Z. P., Xi, Y. and Baweja, S., ‘Improved prediction model for time-dependent deformations of concrete: Part-7, Short form of BP-KX model, statistics and extrapolation of short-time data’,-Ibid. 26 (1993) 567–574.

    Google Scholar 

  8. ‘Prediction of creep, shrinkage and temperature effects in concrete structures’, ACI 209 R-92 (American concrete Institute, Detroit, 1992).

  9. ‘CEB-FIP Model Code, 1990, Design Code’ (Thomas Telford, London, 1990).

  10. Gardner, N. J. and Zhao, J. W., ‘Creep and shrinkage revisited’,ACI Mater. J. 90 (1993) 236–246; Discussion by Bažant, Z. P. and Baweja, S.,Ibid. 91 (1994) 204–216.

    Google Scholar 

  11. Keeton, J. R., ‘Study of creep in concrete’, Technical Reports R333-I, R333-II, R333-III (US Naval Civil Engineering Laboratory, Port Hueneme, California, 1965).

    Google Scholar 

  12. Wallo, E. M., Yuan, R. L., Lott, J. L. and Kesler, C. E., ‘Sixth progress report on prediction of creep in structural concrete from short time tests’, T & AM Report No. 658. (Department of Theoretical and Applied Mechanics, University of Illinois at Urbana, 1965).

  13. L'Hermite, R. G. and Mamillan M., “Influence de la dimension des éprouvettes sur le retrait’,Ann. Inst. Techn. Bâtiment Trav. Publics 23 (1970) 5–6.

    Google Scholar 

  14. L'Hermite, R. G., Mamillan, M. and Lefévre, C., ‘Nouveaux résultats de recherches sur la déformation et la rupture du béton’,-Ibid. 18 (1965) 323–360.

    Google Scholar 

  15. Wittmann, F. H.. Bažant, Z. P., Alou, F. and Kim, J. K., ‘Statistics of shrinkage test data’,Cement Concr. Aggreg. ASTM 9 (1986) 129–153.

    Google Scholar 

  16. Hilsdorf, H. K., ‘Unveröffentlichte Versuche an der MPA München’, private communication, 1980.

  17. Kommendant, G. J., Polivka, M. and Pirtz, D., ‘Study of concrete properties for prestressed concrete reactor vessels’, Final Report No. UCSESM 76-3 (to General Atomic Company) (Department of Civil Engineering, University of California, Berkeley, 1976).

    Google Scholar 

  18. Rostasy, F. S., Teichen, K.-Th. and Engelke, H., ‘Beitrag zur Klärung des Zussammenhanges von Kriechen und Relaxation bei Normal-beton’, Amtliche Forschungs- und Materialprüfungsanstalt für das Bauwesen, Heft 139 (Otto-Graf-Institut, Universität Stuttgart, 1972).

  19. Hansen, T. C. and Mattock, A. H., ‘Influence of size and shape of member on the shrinkage and creep of concrete’,ACI J. 63 (1977) 267–290.

    Google Scholar 

  20. Troxell, G. E., Raphael, J. E. and Davis, R. W., ‘Long-time creep and shrinkage tests of plain and reinforced concrete’,Proc. ASTM. 58 (1958) 1101–1120.

    Google Scholar 

  21. Russell, H. and Burg, R., Private communication, Construction Technology Laboratories, Skokie, Illinois.

  22. Browne, R. D., ‘properties of concrete in reactor vessels’, in ‘Proceedings of the Conference on Prestressed concrete Pressure Vessels’, (Institution of Civil Engineers, London, 1967) pp. 11–31.

    Google Scholar 

  23. Hannant, D. J., ‘Strain behaviour of concrete up to 95°C under compressive stresses’,-Ibid. “, pp. 57–71.

    Google Scholar 

  24. Takahashi, H. and Kawaguchi, T., ‘Study on time-dependent behaviour of high-strength concrete (Part 1). ‘Application of the Time-Dependent Linear Viscoelasticity Theory of Concrete Creep Behaviour”, Report No 21 (Ohbayashi-Gumi Research Institute, Tokyo, 1980) pp. 61–69.

    Google Scholar 

  25. Mandel, J., ‘The Statistical Analysis of Experimental Data’, (Wiley-Interscience, New York, 1964).

    Google Scholar 

  26. Tsubaki, T., ‘Sensitivity of factors in relation to prediction of creep and shrinkage of concrete’, in ‘Creep and Shrinkage of Concrete’, Proceedings of 5th International RILEM Symposium (Con Creep 5), Barcelona, Spain (Chapman & Hall, London, 1993) pp. 611–622.

    Google Scholar 

  27. Neville, A. M., Dilger, W. H. and Brooks, J. J., ‘Creep of Plain and Structural Concrete. (Construction Press, London, 1983).

    Google Scholar 

  28. Granger, L. and Bažant, Z. P., ‘Effect of composition on basic creep of concrete’, Structural Engineering Report No. 93-8/603e (Northwestern University Evanston, Illinois, 1993);ASCE J. Engng Mech., in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bažant, Z.P., Baweja, S. Justification and refinements of model B3 for concrete creep and shrinkage 1. statistics and sensitivity. Materials and Structures 28, 415–430 (1995). https://doi.org/10.1007/BF02473078

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02473078

Keywords

Navigation