Skip to main content
Log in

Components of uncertainty in clutch-size optimization

  • Behavioural Ecology
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Environmental uncertainty can be both a cause and consequence of chance variation in many of the phenotypic factors associated with the control of clutch size in birds. When such uncertainty inflates or otherwise influences the variance associated with expected reproductive success for any genotype, it will also influence the resulting phenotypic optima. Random variation that affects the evolution of clutch size optima explicitly may occur both within (intra-) and across (inter-) generations. Examples of intra-generational uncertainty could include chance variation in: (1) the quality and quantity of offspring, (2) parental quality, and (3) temporal resources like food. Inter-generational uncertainty would include chance variation in demographic and population characters. With respect to clutch (or litter) size, almost all forms of uncertainty tend to favor an optimum (genetic) strategy with a clutch that is smaller than the clutch associated with the apparent or actual maximal fitness of an individual parent. The overall effect of all the components of uncertainty can be evaluated through the integration of all this phenotypic variation: however each step of the integration is a conditional expectation of each component. Therefore, a single factor analysis may indicate a false optimum, and an integrated analysis of all components is necessary to evaluate the importance of their individual and joint effects on the adaptive evolution of clutch size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Alerstam, T. and G. Högstedt. 1984. How important is clutch size dependent adult mortality?Oikos 43, 254–254.

    Google Scholar 

  • Alexander, R. M.Optima for Animals. London: Edward Arnold.

  • Boyce, M. S. and C. M. Perrins. 1987. Optimizing Great Tit clutch size in a fluctuating environment.Ecology 68, 142–153.

    Article  Google Scholar 

  • Brady, R. H. 1979. Natural selection and the criteria by which a theory is judged.Syst. Zool. 28, 600–621.

    Article  Google Scholar 

  • Brockelman, W. Y. 1975. Competition, the fitness of offspring, and optimal clutch size.Am. Nat. 109, 677–699.

    Article  Google Scholar 

  • Bulmer, M. G. 1985. Selection for iteroparity in a variable environment.Am. Nat. 126, 63–71.

    Article  Google Scholar 

  • Charnov, E. L. and J. R. Krebs. 1974. On clutch size and fitness.116, 217–219.

    Google Scholar 

  • Cody, M. L. 1966. A general theory of clutch sizeEvolution 20, 174–184.

    Article  Google Scholar 

  • Cohen, D. 1966. Optimizing reproduction in a randomly varying environment.J. theor. Biol. 12, 119–129.

    Article  Google Scholar 

  • Cooper, W. S. 1984. Expected time to extinction and the concept of fundamental fitness.J. theor. Biol. 107, 603–629.

    Google Scholar 

  • Cooper, W. S. and R. H. Kaplan. 1982. Adaptive “coin-flipping”: a decision-theoretic examination of natural selection for random individual variation.J. theor. Biol. 94, 135–151.

    Article  MathSciNet  Google Scholar 

  • Crossner, K. A. 1977. Natural selection and clutch size in the European Starling.Ecology 58, 885–892.

    Article  Google Scholar 

  • Fisher, R. A. 1930.The Genetical Theory of Natural Selection. Oxford, U.K.: Oxford University Press. (Reprint: 1958. New York: Dover).

    MATH  Google Scholar 

  • Gustafsson, L. and W. J. Sutherland. 1988. The cost of reproduction in the collared flycatcherFicedula albicollis.Nature 335, 813–815.

    Article  Google Scholar 

  • Haldane, J. B. S. and S. D. Jayakar. 1963. Polymorphism due to selection of varying direction.J. Genet. 58, 237–242.

    Article  Google Scholar 

  • Högstedt, G. 1980. Evolution of clutch size in birds: adaptive variation in relation to territory quality.Science 210, 1148–1150.

    Google Scholar 

  • Högstedt, G. 1981. Should there be a positive or a negative correlation between survival of adults in a bird population and their clutch size?Am. Nat. 118, 568–571.

    Article  Google Scholar 

  • Klomp, H. 1970. The determination of clutch size in birds. A review.Ardea 58, 1–124.

    Google Scholar 

  • Krebs, J. R., J. C. Ryan and E. L. Charnov. 1974. Hunting by expectation or optimal foraging? A study of patch use by chickadees.Anim. Behav. 22, 953–964.

    Article  Google Scholar 

  • Lack, D. 1947. The significance of clutch size.89, 309–352.

    Google Scholar 

  • Lack, D. 1954.The Natural Regulation of Animal Numbers. Oxford, U.K.: Oxford University Press.

    Google Scholar 

  • Lack, D. 1966.Population Studies of Birds. Oxford, U.K.: Clarendon Press.

    Google Scholar 

  • Levins, R. 1968.Evolution in changing environments. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Lewontin, R. C. and D. Cohen. 1969. On population growth in a randomly varying environment.Proc. natn Acad. Sci. U.S.A. 62, 1056–1060.

    Article  MathSciNet  Google Scholar 

  • Loman, J. 1980. Brood size optimization and adaptation among hooded crows (Corvus corone).122, 494–500.

    Google Scholar 

  • Mangel, M. and C. W. Clark. 1988.Dynamic Modeling in Behavioral Ecology. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Martin, T. E. 1987. Food as a limit on breeding birds: a life-history perspective.Ann. Rev. Ecol. Syst. 18, 453–487.

    Article  Google Scholar 

  • Maynard Smith, J. 1978. Optimization theory in evolution.Ann. Rev. Ecol. Syst. 9, 31–56.

    Article  Google Scholar 

  • Maynard Smith, J. 1989.Evolutionary Genetics. Oxford, U.K.: Oxford University Press.

    Google Scholar 

  • Mayo, O. 1983.Natural Selection and Its Constraints. London: Academic Press.

    Google Scholar 

  • Milkman, R. 1978. Selection differentials and selection coefficients.Genetics 88, 391–403.

    Google Scholar 

  • Mountford, M. D. 1968. The significance of litter-size.J. Anim. Ecol. 37, 363–367.

    Article  Google Scholar 

  • Murphy, E. C. and E. Haukioja. 1986. Clutch size in nidicolous birds. InCurrent Ornithology, Vol. 4, R. F. Johnston (Ed.) pp. 141–180. New York: Plenum.

    Google Scholar 

  • Murray Jr, B. G. 1979.Population Dynamics. New York: Academic Press.

    Google Scholar 

  • Murray Jr, B. G. 1985. Evolution of clutch size in tropical species of birds. InNeotropical Ornithology, P. A. Buckley, M. S. Foster, E. S. Morton, R. S. Ridgely and F. G. Buckley (Eds), pp. 505–519. Lawrence, KS: Allen Press.

    Google Scholar 

  • Murray Jr B. G. and V. Nolan, Jr. 1989. The evolution of clutch size. I. An equation for calculating clutch size.Evolution 43, 1699–1705.

    Article  Google Scholar 

  • Murray Jr, B. G., J. W. Fitzpatrick and G. E. Woolfenden. 1989. The evolution of clutch size. II. A test of the Murray-Nolan equation.Evolution 43, 1706–1711.

    Article  Google Scholar 

  • Nur, N. 1984. The consequences of brood size for breeding blue tits. II. Nestling weight, offspring survival and optimal brood size.J. Anim. Ecol. 53, 497–517.

    Article  Google Scholar 

  • Nur, N. 1988a. The consequences of brood size in breeding blue tits. III. Measuring the cost of reproduction: survival, future fecundity, and differential dispersal.Evolution 42, 351–362.

    Article  Google Scholar 

  • Nur, N. 1988b. The cost of reproduction in birds: an examination of the evidence.Ardea 76, 155–168.

    Google Scholar 

  • O'Connor, R. J. 1978. Brood reduction in birds: selection for fratricide, infanticide and suicide?Anim. Behav. 26, 79–96.

    Article  MathSciNet  Google Scholar 

  • Perrins, C. M. 1965. Population fluctuations and clutch size in the Great Tij,Parus major L.J. Anim. Ecol. 34, 601–647.

    Article  Google Scholar 

  • Perrins, C. M. and P. J. Jones. 1974. The inheritance of clutch size in the Great Tit (Parus major L.).Condor 76, 225–229.

    Google Scholar 

  • Perrins, C. M. and D. Moss. 1975. Reproductive rates in the great tit.J. Anim. Ecol. 44, 659–706.

    Google Scholar 

  • Pettifor, R. A., C. M. Perrins and R. H. McCleery. 1988. Individual optimization of clutch size in great tits.Nature 336, 160–162.

    Article  Google Scholar 

  • Price, T. and L. Liou. 1989. Selection on clutch size in birds.Am. Nat. 134, 950–959.

    Article  Google Scholar 

  • Price, T., M. Kirkpatrick and S. J. Arnold. 1988. Directional selection and the evolution of breeding data in birds.Science 240, 798–799.

    Google Scholar 

  • Real, L. 1980. Fitness, uncertainty, and the role of diversification in evolution and behavior.Am. Nat. 115, 623–638.

    Article  MathSciNet  Google Scholar 

  • Real, L. and T. Caraco. 1986. Risk and foraging in stochastic environments.Ann. Rev. Ecol. Syst. 17, 371–390.

    Article  Google Scholar 

  • Rockwell, R. F., C. S. Findlay and F. Cooke. 1987. Is there an optimal clutch size in snow geese?Am. Nat. 130, 839–863.

    Article  Google Scholar 

  • Royama, T. 1966. Factors governing feeding rate, food requirement and brood size of nestling Great TitsParus major.108, 313–347.

    Google Scholar 

  • Saiah, H. and N. Perrin. 1990. Autumnal vs spring hatching in the fairy shrimpSiphonophanes grubii (Dybowski) (Crustacea, Anostraca): diversified bet-hedging strategy?Func. Ecol. 4, 769–775.

    Article  Google Scholar 

  • Schaffer, W. 1974. Optimal reproductive effort in fluctuating environments.Am. Nat. 108, 783–790.

    Article  Google Scholar 

  • Schifferli, L. 1978. Experimental modification of brood size among House SparrowsPasser domesticus.120, 365–369.

    Google Scholar 

  • Shields, W. M. 1982.Philopatry, Inbreeding, and the Evolution of Sex. Albany, NY: State University of New York Press.

    Google Scholar 

  • Shields, W. M. and J. R. Crook. 1987. Barn Swallow coloniality: a net cost for group breeding in the Adirondacks?Ecology 68, 1373–1386.

    Article  Google Scholar 

  • Slagsvold, T. and J. T. Lifjeld. 1988. Ultimate adjustment of clutch size to parental feeding capacity in a passerine brid.Ecology 69, 1918–1922.

    Article  Google Scholar 

  • Smith, J. N. M. 1981. Does high fecundity reduce survival in song sparrows?Evolution 35, 1142–1148.

    Article  Google Scholar 

  • Smith, C. C. and S. D. Fretwell. 1974. The optimal balance between size and number of offspring.Am. Nat. 108, 499–506.

    Article  Google Scholar 

  • Stearns, S. C. 1976. Life history tactics: a review of the ideas.Quart. Rev. Biol. 51, 3–47.

    Article  Google Scholar 

  • Stephens, D. W. 1989. Variance and the value of information.Am. Nat. 134, 128–140.

    Article  Google Scholar 

  • Stephens, D. W. and J. R. Krebs. 1986.Foraging Theory. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Tuljapurkar, S. D. 1989. An uncertain life: demography in random environments.Theory. Pop. Biol. 35, 227–294.

    Article  MATH  MathSciNet  Google Scholar 

  • Van Noordwijk, A. J., J. H. Van Balen and W. Scharloo. 1981. Heritability of ecologically important traits in the Great Tit. InThe Integrated Study of Bird Populations, H. Klomp and J. W. Woldendorp (Eds), pp. 193–203. Amsterdam: North-Holland.

    Google Scholar 

  • Williams, G. C. 1966. Natural selection, the cost of reproduction, and a refinement of Lack's principle.Am. Nat. 100, 687–690.

    Article  Google Scholar 

  • Winkler, D. W. 1985. Factors determining a clutch size reduction in California Gulls (Larus Californicus): A multi-hypothesis approach.Evolution 39, 667–677.

    Article  Google Scholar 

  • Winkler, D. W. and K. Wallin. 1987. Offspring size and number: a life history model linking effort per offspring and total effort.Am. Nat. 129, 708–720.

    Article  Google Scholar 

  • Wright, S. 1978.Evolution and the Genetics of Populations. Vol. 4.Variability Within and Among Natural Populations. Chicago, U.S.A.: University of Chicago Press.

    Google Scholar 

  • Yoshimura, J. 1989. The effects of uncertainty on biological systems: a probabilistic perspective. Ph. D. Thesis, SUNY-ESF, Syraeuse, NY.

    Google Scholar 

  • Yoshimura, J. and C. W. Clark. 1991. Individual adaptations in stochastic environments.Evol. Ecol. 5, 173–192.

    Article  Google Scholar 

  • Yoshimura, J. and W. M. Shields. 1987. Probabilistic optimization of phenotype distributions: a general solution for the effects of uncertainty on natural selection?Evol. Ecol. 1, 125–138.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshimura, J., Shields, W.M. Components of uncertainty in clutch-size optimization. Bltn Mathcal Biology 54, 445–464 (1992). https://doi.org/10.1007/BF02464843

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02464843

Keywords

Navigation