Skip to main content
Log in

Consistency of optimal sequence alignments

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Pairwise optimal alignments between three or more sequences are not necessarily consistent as a whole, but consistent and inconsistent residues are usually distributed in clusters. An efficient method has been developed for locating consistent regions when each pairwise alignment is given in the form of a “skeletal representation” (Bull. math. Biol. 52, 359–373). This method is further extended so that the combination of pairwise alignments that gives the greatest consistency is found when possibly many alignments are equally optimal for each pairwise comparison. A method for acceleration of simultaneous multiple sequence alignment is proposed in which consistent regions serve as “anchor points” limiting application of direct multi-way alignment to the rest of “inconsistent” regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Aho, A. V., J. E. Hopcroft and J. D. Ullman. 1983.Data Structures and Algorithms. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Altschul, S. F. and B. W. Erickson. 1986. Optimal sequence alignment using affine gap costs.Bull. Math. Biol. 48, 603–616.

    Article  MATH  MathSciNet  Google Scholar 

  • Altschul, S. F. and D. J. Lipman. 1989. Trees, stars, and multiple biological sequence alignment.SIAM J. appl. Math. 49, 197–209.

    Article  MATH  MathSciNet  Google Scholar 

  • Carrillo, H. and D. Lipman. 1988. The multiple sequence alignment problem in biology.SIAM J. appl. Math. 48, 1073–1082.

    Article  MATH  MathSciNet  Google Scholar 

  • Dayhoff, M. O., R. M. Schwartz and B. C. Orcutt. 1978. A model of evolutionary change in proteins. InAtlas of Protein Sequence and Structure, Vol. 5, Suppl. 3, pp. 345–352. Washington: National Biomedical Research Foundation.

    Google Scholar 

  • Dumas, J.-P. and J. Ninio. 1982. Efficient algorithm for folding and comparing nucleic acid sequences.Nucleic Acids Res. 10, 197–206.

    Google Scholar 

  • Fredman, M. L. 1984. Algorithms for computing evolutionary similarity measures with length independent gap penalties.Bull. math. Biol. 46, 553–566.

    Article  MATH  MathSciNet  Google Scholar 

  • Gotoh, O. 1984. An improved algorithm for matching biological sequences.J. molec. Biol.,162, 705–708.

    Article  Google Scholar 

  • Gotoh, O. 1986. Alignment of three biological sequences with an efficient traceback procedure.J. theor. Biol. 121, 327–337.

    Article  MathSciNet  Google Scholar 

  • Gotoh, O. 1990. Optimal sequence alignment allowing for long gaps.Bull. math. Biol. 52, 359–373.

    MATH  Google Scholar 

  • Hardy, L. W., J. S. Finer-Moore, W. R. Montfort, M. O. Jones, D. V. Santi and R. M. Stroud. 1987. Atomic structure of thymidylate synthase: target for rational drug design.Science 235, 448–455.

    Google Scholar 

  • Lipman, D. J., S. F. Altschul, and J. D. Kececioglu, 1989. A tool for multiple sequence alignment.Proc. natl. Acad. Sci. U.S.A. 86, 4412–4415.

    Article  Google Scholar 

  • Miller, W. and E. W. Myers. 1988. Sequence comparison with concave weighting functions.Bull. math. Biol. 50, 97–120.

    Article  MATH  MathSciNet  Google Scholar 

  • Myers, E. W. and W. Miller. 1988. Optimal alignments in linear space.Comput. Applic. Biosci. 4, 11–17.

    Google Scholar 

  • Murata, M., J. S. Richardson and J. L. Sussman. 1985. Simultaneous comparison of three protein sequences.Proc. natl. Acad. Sci. U.S.A. 82, 3073–3077.

    Article  Google Scholar 

  • Needleman, S. B. and C. D. Wunsch. 1970. A general method applicable to the search for similarities in the amino acid sequence of two proteins.J. molec. Biol. 48, 443–453.

    Article  Google Scholar 

  • Sankoff, D. and R. J. Cedergren. 1983. Simultaneous comparison of three or more sequences related by a tree. InTime Warps, String Edits, and Macromolecules: the Theory and Practice of Sequence Comparison. D. Sankoff and J. B. Kruskal (eds), pp. 253–263. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Santibanez, M. and K. Rohde. 1987. A multiple alignment program for protein sequences.Comput. Applic. Biosci. 3, 111–114.

    Google Scholar 

  • Sellers, P. H. 1974. On the theory and computation of evolutionary distances.SIAM J. appl. Math. 26, 787–793.

    Article  MATH  MathSciNet  Google Scholar 

  • Sobel, E. and H. M. Martinez. 1986. A multiple sequence alignment program.Nuclic Acids Res. 14, 363–374.

    Google Scholar 

  • Volz, K. W., D. A. Matthews, R. A. Alden, S. T. Freer, C. Hansch, B. T. Kaufman and J. Kraut. 1982. Crystal structure of avian dihydrofolate reductase containing phenyltriazine and NADPH.J. biol. Chem. 257, 2528–2536.

    Google Scholar 

  • Waterman, M. S., 1984. Efficient sequence alignment algorithms.J. theor. Biol. 108, 333–337.

    MathSciNet  Google Scholar 

  • Waterman, M. S. and M. D. Perlwitz. 1984. Line geometries for sequence comparisons.Bull. math. Biol. 46, 567–577.

    Article  MATH  MathSciNet  Google Scholar 

  • Waterman, M. S., T. F. Smith and W. A. Beyer. 1976. Some biological sequence metrics.Adv. Math. 20, 367–387.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Akiyoshi Wada on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gotoh, O. Consistency of optimal sequence alignments. Bltn Mathcal Biology 52, 509–525 (1990). https://doi.org/10.1007/BF02462264

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02462264

Keywords

Navigation