Skip to main content
Log in

Comparison of isoeffect relationships in radiotherapy

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Irradiation affects numerous physiological processes within cells and tissues and can lead to damage or death. If the damage is not too severe, cells have the ability to repair and regenerate. Many small injuries are repaired more easily than ones causing extensive damage and, consequently, tissue typically respond differently to one large dose of radiation than to many small doses, separated in time. In the radiotherapy of tumors, the choice of the fractionation regimen of dose over time is therefore as crucial as the total radiation dose. The interdependence between total dose, fractionation regimen, and radiation effect has been described mathematically with variousisoeffect relationships. These relationships appear to be fundamentally distinct and have been considered unrelated; some even claim that one class of isoeffect relationship is appropriate whereas other relationships are rather useless. We examine how alternative isoeffect models relate to each other and test the reliability of estimating parameter values of one model from the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Chadwick, K. H. and H. P. Leenhouts. 1973. A molecular theory of cell survival.Phys. Med. Biol. 18, 78–87.

    Article  Google Scholar 

  • Ellis, F., 1968. The relationship of biological effect to dose-time-fractionation factors in radiotherapy.Curn. Top. Radiat. Res. 4, 359–397.

    Google Scholar 

  • Fletcher, G. H., 1980.Textbook of Radiotherapy. Philadelphia, PA: Lea and Febiger.

    Google Scholar 

  • Fowler, J. F. and B. E. Stern. 1963. Dose-time relationships in radiotherapy and the validity of cell survival curve models.Br. J. Radiol. 36, 163–173.

    Google Scholar 

  • Kirk, J., W. M. Gray, and E. R. Watson. 1972. Cumulative radiation effect, Part II: continuous radiation therapy—long lived sources.Clin. Radiol. 23, 93–105.

    Article  Google Scholar 

  • Orton, C. G. 1974. Time-dose factors (TDFs) in brachytherapy.Br. J. Radiol. 47, 603–607.

    Google Scholar 

  • Paterson, R., 1952. Studies in optimum dosage—the MacKenzie Davidson Memorial Lecture.Br. J. Radiol. 25, 505–516.

    Article  Google Scholar 

  • Roesch, W. C. 1978. Model of the radiation sensitivity of mammalian cells. Proceedings of the 3rd Symposium on Neutron Dosimetry in Biology and Medicine, pp. 1–28.

  • Savageau, M. A. 1969. Biochemical Systems Analysis, II. The steady-state solutions for an n-pool system using a power-law approximation.J. theor. Biol. 25, 370–379.

    Article  Google Scholar 

  • Savageau, M. A. 1971. Concepts relating the behavior of biochemical systems to their underlying molecular properties.Arch. Biochem. Biophys. 145, 612–621.

    Article  Google Scholar 

  • Savageau, M. A. 1976.Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology. Reading, MA, Addison-Wesley.

    MATH  Google Scholar 

  • Savageau, M. A. 1979a. Growth of complex systems can be related to the properties of their underlying determinants.Proc. natl. Acad. Sci. 76, 5413–5417.

    Article  MATH  MathSciNet  Google Scholar 

  • Savageau, M. A. 1979b. Alometric morphogenesis, of complex systems: derivation of the basic equations from first principles.Proc. natl. Acad. Sci. 76, 6023–6025.

    Article  MATH  MathSciNet  Google Scholar 

  • Savageau, M. A. and E. O. Voit. 1987. Recasting nonlinear differential equations as S-systems. A canonical nonlinear form.Math. Biosci. 87, 83–115.

    Article  MATH  MathSciNet  Google Scholar 

  • Strandqvist, M. 1944. Studien über die kumulative Wirkung der Röntgenstrahlen bei Fraktionierung.Acta Radiol. Suppl. 55, 1–300.

    Google Scholar 

  • Taylor, J. M. G., H. R. Withers and Z. Hu, 1988. A comparison of mathematical models for regeneration in acutely responding tissues.Int. J. Radiat. Oncol. Biol. Phys. 15, 1389–1400.

    Google Scholar 

  • Thames, H. D. and J. H. Hendry. 1987.Fractionation in Radiotherapy. London: Taylor and Francis.

    Google Scholar 

  • Travis, E. L. and S. L. Tucker. 1987. Isoeffect models and fractionated radiation therapy.Int. J. Radiat. Oncol. Biol. Phys. 13, 283–287.

    Google Scholar 

  • Tucker, S. L. and H. D. Thames. 1983. Flexure-dose: the low-dose limit of effective fractionation.Int. J. Radiat. Oncol. Biol. Phys. 9, 1373–1383.

    Google Scholar 

  • Voit, E. O. and M. A. Savageau. 1987. Accuracy of alternative representations for integrated biochemical systems.Biochemistry 26, 6869–6880.

    Article  Google Scholar 

  • Withers, H. R. 1985. Biological basis for altered fraction schemes.Cancer 55, (Suppl.). 2086–2095.

    Article  Google Scholar 

  • Withers, H. R., H. D. Thames and L. J. Peters. 1983. A new isoeffect curve for change in dose per fraction.Radiother. Oncol. 1, 187–191.

    Google Scholar 

  • Yi, P. N., K. H. Cho, J. O. Fenn, J. D. Wise, G. D. Frey, R. C. Johnson, L. C. Carlson and R. D. Marks Jr. 1988. Effects of proliferation and slow repair of model predictions of tissue response.Int. J. Radiat. Oncol. Biol. Phys. 15, 256.

    Google Scholar 

  • Yi, P. N., J. O. Fenn, R. D. Marks and J. H. Kim. 1990. Effects of proliferation in radiotherapy, in prep.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voit, E.O., Yi, P.N. Comparison of isoeffect relationships in radiotherapy. Bltn Mathcal Biology 52, 657–675 (1990). https://doi.org/10.1007/BF02462104

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02462104

Keywords

Navigation