Skip to main content
Log in

A two-backbone polymer model for interphase chromosome geometry

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A polymer model for the overall geometric structure of a human chromosome during the G0/G1 portion of cell-cycle interphase is constructed, based on fluorescencein situ hybridization data on distances between defined genomic sequences. The model consists of flexible giant loops, averaging about 6 million base pairs, with two random-walk backbones; it involves essentially three parameters. Numerical results based on properly selected values of parameters fit the data well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert, B., D. Bray, J. Lewis, M. Raff, K. Roberts and J. Watson. 1994.Molecular Biology of the Cell. New York: Garland Publishing.

    Google Scholar 

  • Cremer, T., A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schrock, M. R. Spreicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer and P. Lichter. 1993. Role of chromosome territories in the functional compartmentlization of the cell nucleus.Cold Spring Harbor Symp. Quantitative Biol. V.LVIII, 777–792.

    Google Scholar 

  • Doi, M. and S. F. Edwards. 1988.The Theory of Polymer Dynamics. Oxford: Oxford Univ. Press.

    Google Scholar 

  • Hahnfeldt, P., J. E. Hearst, D. J. Brenner, R. K. Sachs and L. R. Hlatky. 1993. Polymer models for interphase chromosomes.Proc. Nat. Acad. Sci. U.S.A. 90, 7854–7858.

    Article  Google Scholar 

  • Lewin, B. 1994. Chromatin and gene expression: constant questions, changing answers.Cell 79, 397–406.

    Article  Google Scholar 

  • Ostashevsky, J. Y. and C. S. Lange. 1994. The 30-nm chromatin fiber as a flexible polymer.J. Biomol. Struct. Dynam. 11, 813–820.

    Google Scholar 

  • Sachs, R., G. van der Engh, B. Trask, H. Yokota and J. E. Hearst. 1995. A random-walk/giant-loop model for interphase chromosomes.Proc. Nat. Acad. Sci. U.S.A. 92, 2710–2714.

    Article  Google Scholar 

  • Tinoco, I. Jr., K. Sauer and J. C. Wang. 1985.Physical Chemistry Principles and Applications in Biological Sciences. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • van den Engh, G., R. Sachs and B. Trask. 1992. Estimating genomic distance from DNA sequence location in cell nuclei by a random walk model.Science 257, 1410–1412.

    Google Scholar 

  • Van Holde, K. E. 1989.Chromatin. New York: Springer-Verlag.

    Google Scholar 

  • Yokota, H., G. van den Engh, J. Hearst, R. Sachs and B. Trask. 1995. Evidence for the organization of chromatin in megabase pair-sized loops arranged along a random walk path in the human G0/G1 interphase nucleus.J. Cell Biology 130, 1239–1249.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Sachs, R.K. A two-backbone polymer model for interphase chromosome geometry. Bltn Mathcal Biology 59, 325–337 (1997). https://doi.org/10.1007/BF02462006

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02462006

Keywords

Navigation