Skip to main content
Log in

Positive feedback and angiogenesis in tumor growth control

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In vivo tumor growth data from experiments performed in our laboratory suggest that basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) are angiogenic signals emerging from an up-regulated genetic message in the proliferating rim of a solid tumor in response to tumor-wide hypoxia. If these signals are generated in response to unfavorable environmental conditions, i.e. a decrease in oxygen tension, then the tumor may play an active role in manipulating its own environment. We have idealized this type of adaptive behavior in our mathematical model via a parameter which represents the carrying capacity of the host for the tumor. If that model parameter is held constant, then environmental control is limited to tumor shape and mitogenic signal processing. However, if we assume that the response of the local stroma to these signals is an increase in the host's ability to support an ever larger tumor, then our models describe a positive feedback control system. In this paper, we generalize our previous results to a model including a carrying capacity which depends on the size of the proliferating compartment in the tumor. Specific functional forms for the carrying capacity are discussed. Stability criteria of the system and steady state conditions for these candidate functions are analyzed. The dynamics needed to generate stable tumor growth, including countervailing negative feedback signals, are discussed in detail with respect to both their mathematical and biological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, J. A. and S. A. Megalakis. 1990. Diffusion regulated growth characteristics of the spherical prevascular carcinoma.Bull. Math. Biol. 52, 549–582.

    MATH  Google Scholar 

  • Bajzer, Z. and S. Vuk-Pavlovic. 1990. Quantitative aspects of autocrine regulation in tumors.Crit. Rev. Oncogenesis 2, 53–73.

    Google Scholar 

  • Byrne, H. M. and M. A. J. Chaplain. 1995. Mathematical models for tumour angiogenesis: numerical simulations and nonlinear wave solutions.Bull. Math. Biol. 57, 461–486.

    MATH  Google Scholar 

  • Ciampi, A., L. Kates, R. Buick, Y. Kruikov and J. E. Till. 1986. Multi-type Galton-Watson process as a model for proliferating human tumour cell populations derived from stem cells: estimation of the stem cell self-renewal probabilities in human ovarian carcinomas.Cell Tissue Kinet. 19, 129–140.

    Google Scholar 

  • Day, R. S. 1986. A branching process model for heterogeneous cell populations.Math. Biosci. 78, 73–90.

    Article  MATH  MathSciNet  Google Scholar 

  • Goustin, A. S., E. B. Loef, G. D. Shipley and H. L. Moses. 1986. Growth factors and cancer.Cancer Res. 46, 1015–1029.

    Google Scholar 

  • Gyllenberg, M. and G. F. Webb. 1989. Quiescence as an explanation of Gompertzian tumor growth. Technical Report MAT-A264, Vanderbilt University.

  • Heppner, G. H. 1984. Tumor heterogeneity.Cancer Res. 44, 2259–2265.

    Google Scholar 

  • Kendal, W. S. 1985. Gompertzian growth as a consequence of tumor heterogeneity.Math Biosci. 73, 103–107.

    Article  MATH  MathSciNet  Google Scholar 

  • Keski-Oja, J., A. E. Postlethwaite and H. L. Moses. 1988. Transforming growth factors in the regulation of malignant cell growth and invasion.Cancer Investigations 6, 705–724.

    Google Scholar 

  • Leith, J. T. and S. Michelson. 1990. Tumor radiocurability: relationship to intrinsic tumor heterogeneity and the tumor bed effect.Inv. Metast. 10, 329–351.

    Google Scholar 

  • Leith, J. T. and S. Michelson. 1995a. Levels of selected growth factors in viable and necrotic regions of xenografted HCT-8 human colon tumours.Cell Proliferation 28, 279–286.

    Google Scholar 

  • Leith, J. T. and S. Michelson. 1995b. Secretion rates and levels of vascular endothelial growth factor in clone A or HCT-8 human colon tumor cells as a function of oxygen concentration. Unpublished manuscript.

  • Leith, J. T., G. Papa, L. Quaranto and S. Michelson. 1992. Modification of the volumetric growth responses and steady state hypoxic fractions of xenografted DLD-2 human colon carcinomas by administration of basic fibroblast growth factor or suramin.Br. J. Cancer 66, 345–348.

    Google Scholar 

  • Loef, E. B., J. A. Proper, A. S. Goustin, G. D. Shipley, P. E. DiCorleto and H. L. Moses. 1986. Induction of c-sis mRNA and activity similar to platelet-derived growth factor by transforming growth factor beta: a proposed model for indirect mitogenesis involving autocrine activity.Proc. Nat. Acad. Sci. USA 83, 2453–2457.

    Article  Google Scholar 

  • Marusic, M. and S. Vuk-Pavlovic. 1993. Prediction power of mathematical models of tumor growth.J. Biol. Syst. 1, 69–78.

    Article  Google Scholar 

  • Marusic, M., Z. Bajzer, J. P. Freyer and S. Vuk-Pavlovic. 1991. Modeling autostimulation of growth in multicellular tumor spheroids.Int. J. Biomed. Comput. 29, 149–158.

    Article  Google Scholar 

  • Marusic, M., Z. Bajzer, S. Vuk-Pavlovic and J. R. Freyer. 1994. Tumor growth.In vivo and as multicellular spheroids compared by mathematical models.Bull. Math. Biol. 56, 617–632.

    Article  MATH  Google Scholar 

  • McCarty, L. P., S. Karr, S. Michelson and J. T. Leith. 1995. Comparison of FGF-2 levels in clone A human colon cancer cellsin vitro versus levels in xenografted tumours.Br. J. Cancer 72, 10–16.

    Google Scholar 

  • Mead, J. E. and N. Fausto. 1989. Transforming growth factor alpha may be a physiological regulator of liver regeneration by means of an autocrine mechanism.Proc. Nat. Acad. Sci. USA 86, 1558–1562.

    Article  Google Scholar 

  • Michelson, S. and J. T. Leith. 1991. Autocrine and paracrine growth factors in tumor growth.Bull. Math. Biol. 53, 639–656.

    Google Scholar 

  • Michelson, S. and J. T. Leith. 1992. Growth factors and growth control of heterogeneous cell populations.Bull. Math. Biol. 55, 993–1011.

    Google Scholar 

  • Michelson, S. and J. T. Leith. 1994. Dormancy, regression, and recurrence: towards a unifying theory of tumor growth control.J. Theor. Biol. 169, 327–338.

    Article  Google Scholar 

  • O'Reilly, M. S., L. Holmgren, Y. Shing, C. Chen, R. A. Rosenthal, M. Moses, W. S. Lane, Y. Chao, E. H. Sage and J. Folkman. 1995. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma.Cell 79, 315–328.

    Article  Google Scholar 

  • Piantadosi, S. 1985. A model of tumor growth with first-order birth and death rates.Comp. Biomed. Res. 18, 220–232.

    Article  Google Scholar 

  • Roberts, A. B., M. A. Anzano, L. M. Wakefield, N. S. Roche, D. F. Stern and M. B. Sporn. 1985. Type beta transforming growth factor: a bifunctional regulator of cellular growth.Proc. Nat. Acad. Sci. USA 82, 119–123.

    Article  Google Scholar 

  • Rockwell, S. 1981. Effect of host age on the transplantation, growth, and radiation response of EMT6 tumors.Cancer Res. 41, 527.

    Google Scholar 

  • Rosen, R. 1978. Feedforwards and global systems failure: a generalized mechanism for senescence.J. Theor. Biol. 74, 579–590.

    Article  Google Scholar 

  • Sporn, M. B. and A. B. Roberts. 1985. Autocrine growth factors and cancer.Nature 313, 745–747.

    Article  Google Scholar 

  • Sporn, M. B. and G. J. Todaro. 1980. Autocrine secretion and malignant transformation of cells.New Engl. J. Med. 303, 878–880.

    Article  Google Scholar 

  • Truco, E. 1965a. Mathematical models for cellular systems: the Von Foerster equation. Part I.Bull. Math. Biophys. 27, 283–303.

    Google Scholar 

  • Truco, E. 1965b. Mathematical models for cellular systems: the Von Foerster equation. Part II.Bull. Math. Biophys. 27, 449–471.

    Article  Google Scholar 

  • Vaidya, P. G., V. G. Vaidya and D. G. Martin. 1991. An application of the nonlinear bifurcation theory to tumor growth modeling.Int. J. Biomed. Comput. 27, 27–46.

    Article  MATH  Google Scholar 

  • Von Foerster, H. 1959. Some remarks on changing populations. InThe Kinetics of Cellular Proliferation, F. Stohlman (Ed). Grune and Stratton, New York.

    Google Scholar 

  • Wette, R., I. N. Katz and E. Y. Rodin, 1974a. Stochastic processes for solid tumor kinetics I. Surface regulated growth.Math. Biosci. 19, 231–255.

    Article  MATH  Google Scholar 

  • Watte, R., I. N. Katz and E. Y. Rodin. 1974b. Stochastic processes for solid tumor kinetics II. Diffusion regulated growth.Math. Biosci. 19, 311–338.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michelson, S., Leith, J.T. Positive feedback and angiogenesis in tumor growth control. Bltn Mathcal Biology 59, 233–254 (1997). https://doi.org/10.1007/BF02462002

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02462002

Keywords

Navigation