Skip to main content
Log in

Density and diffusion limited aggregation in membranes

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Aggregation of membrane molecules is a crucial phenomenon in developing organisms, a classic example being the aggregation of post-synaptic receptors during synaptogenesis. Our understanding of the molecular events involved is improving, but most models of the aggregation or concentration process do not address binding events on the molecular level. An exception is the study of diffusion limited aggregation, in which the aggregation process is simulated on a molecular level. In this analysis, however, important physical parameters such as molecular size, diffusion constant and initial density are not addressed. Thus no predictions about the rate at which such aggregates will form is possible. In the present work the model of diffusion limited aggregation is extended to incorporate these parameters and make the corresponding predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, M. J. and M. W. Cohen. Nerve-induced and spontaneous redistribution of acetylcholine receptors on cultured muscle cells.J. Physiol. (Lond). 268, 757–773.

  • Angelides, K. J., L. W. Elmer, D. Loftus and E. Elson. 1988. Distribution and lateral mobility of voltage-dependent sodium channels in neurons [published erratum appears inJ. Cell Biol. (1989) May;108(5): preceding 2001].J. Cell Biol. 106, 1911–1925.

    Article  Google Scholar 

  • Axelrod, D., P. Ravdin, D. E. Koppel, J. Schlessinger, W. W. Webb, E. L. Elson and T. R. Podleski. 1976. Lateral motion of fluorescently labeled acetylcholine receptors in membranes of developing muscle fibers.Proc. Natl. Acad. Sci. U.S.A. 73, 4594–4598.

    Article  Google Scholar 

  • Baker, L. P. and H. B. Peng. 1993. Tyrosine phosphorylation and acetylcholine receptor cluster formation in cultured Xenopus muscle cells.J. Cell Biol. 120, 185–195.

    Article  Google Scholar 

  • Chao, N. M., S. H. Young and M. M. Poo. 1981. Localization of cell membrane components by surface diffusion into a “trap”.Biophys. J. 36, 139–153.

    Google Scholar 

  • Dewey, T. G. and M. M. Datta. 1989. Determination of the fractal dimension of membrane protein aggregates using fluorescence energy transfer.Biophys. J. 56, 415–420.

    Google Scholar 

  • Dubinsky, J. M., D. J. Loftus, G. D. Fischbach and E. L. Elson. 1989. Formation of acetylcholine receptor clusters in chick myotubes: migration or new insertion?J. Cell Biol. 1733–1743.

  • Edidin, M. 1987. Rotational and lateral diffusion of membrane proteins and lipids: phenomena and function. InCurrent Topics in Membranes and Transport, pp. 91–119. Orlando: Academic Press.

    Google Scholar 

  • Edwards, C. and H. L. Frisch. 1976. A model for the localization of acetylcholine receptors at the muscle endplate.J. Neurobiol. 7, 377–381.

    Article  Google Scholar 

  • Gershon, N. D. 1978. Model for capping of membrane receptors based on boundary surface effects.Proc. Natl. Acad. Sci. U.S.A. 75, 1357–1360.

    Article  Google Scholar 

  • Joe, E. and K. J. Angelides. 1993. Clustering and mobility of voltage-dependent sodium channels during myelination.J. Neurosci. 13, 2993–3005.

    Google Scholar 

  • Kolb, M., R. Botet and R. Jullien. 1983. Scaling of kinetically growing clusters.Phys. Rev. Lett. 51, 1123–1126.

    Article  Google Scholar 

  • Kusumi, A., Y. Sako and M. Yamamoto. 1993. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells.Biophys. J. 65, 2021–2040.

    Google Scholar 

  • Mandelbrot, B. B. and C. J. G. Evertsz. 1990. The potential distribution around growing fractal clusters.Nature 348, 143–145.

    Article  Google Scholar 

  • Meakin, P. 1983. Formation of fractal clusters and networks by irreversible diffusion-limited aggregation.Phys. Rev. Lett. 51, 1119–1122.

    Article  Google Scholar 

  • Meakin, P. 1987. Noise-reduced diffusion-limited aggregation.Phys. Rev. A 36, 332–339.

    Article  Google Scholar 

  • Moreira, F., R. R. Freire and C. M. Chaves. 1989. Scaling laws for the noise-reduced diffusion-limited aggregation.Phys. Rev. A 40, 2225–2228.

    Article  Google Scholar 

  • Muthukumar, M. 1983. Mean-field theory for diffusion-limited cluster formation.Phys. Rev. Let. 50, 839.

    Article  Google Scholar 

  • Northrup, S. H. and H. P. Erickson. 1992. Kinetics of protein-protein association explained by Brownian dynamics computer simulation.Proc. Natl. Acad. Sci. U.S.A. 89, 3338–3342.

    Article  Google Scholar 

  • Ossadnik, P. 1991. Multiscaling analysis of large-scale off-lattice DLA.Physica A 176, 454–462.

    Article  Google Scholar 

  • Peng, H. B., L. P. Baker and Z. Dai. 1993. A role of tyrosine phosphorylation in the formation of acetylcholine receptor clusters induced by electric fields in cultured Xenopus muscle cells.J. Cell Biol. 120, 197–204.

    Article  Google Scholar 

  • Poo, M.-m. 1982. Rapid lateral diffusion of functional ACh receptors in embryonic muscle cell membrane.Nature 295, 332–335.

    Article  Google Scholar 

  • Sander, L. M. 1986. Fractal growth processes.Nature 322, 789–793.

    Article  Google Scholar 

  • Saxton, M. J. 1992. Lateral diffusion and aggregation. A Monte Carlo study.Biophys. J. 61, 119–128.

    Google Scholar 

  • Saxton, M. J. 1993. Lateral diffusion in an archipelago. Dependence on tracer size.Biophys. J. 64, 1053–1062.

    Google Scholar 

  • Stenberg, M. and H. Nygren. 1991. Computer simulation of surface-induced aggregation of ferritin.Biophys. Chem. 41, 131–141.

    Article  Google Scholar 

  • Stollberg, J. 1994. A model for diffusion-limited aggregation in membranes.Com. Mol. Cell. Biophys. 8, 188–198.

    Google Scholar 

  • Stollberg, J. and S. E. Fraser. 1988. Acetylcholine receptors and concanavalin A-binding sites on cultured Xenopus muscle cells: electrophoresis, diffusion and aggregation.J. Cell. Biol. 197. 1397–1408.

    Article  Google Scholar 

  • Stollberg, J. and S. E. Fraser. 1990. Local accumulation of acetylcholine receptors is neither necessary nor sufficient to induce cluster formation.J. Neurosci. 10, 247–255.

    Google Scholar 

  • Stollberg, J. and H. Gordon. 1992. Diffusion-trapping of acetylcholine receptors: a numerical model.Invited Seminar (Keystone Symposia: Synapse formation and function: The neuromuscular junction and the central nervous system).

  • Tokuyama, M. and K. Kawasaki. 1984. Fractal dimensions for diffusion-limited aggregation.Phys. Lett. 100A, 337–340.

    Google Scholar 

  • Wallace, B. G. 1991. The mechanism of agrin-induced acetylcholine receptor aggregation.Philos. Trans. R. Soc. Lond. [Biol.] 331, 273–280.

    Google Scholar 

  • Wallace, B. G. 1994. Staurosporine inhibits agrin-induced acetylcholine receptor phosphorylation and aggregation.J. Cell. Biol. 125, 661–668.

    Article  Google Scholar 

  • Wallace, B. G., Z. Qu and R. L. Huganir. 1991. Agrin induces phosphorylation of the nicotinic acetylcholine receptor.Neuron 6, 869–878.

    Article  Google Scholar 

  • Weaver, D. L. 1983. Diffusion-mediated localization on membrane surfaces.Biophys. J. 41, 81–86.

    Article  Google Scholar 

  • Witten, T. A., Jr. and P. Meakin. 1983. Diffusion-limited aggregation at multiple growth sites.Phys. Rev. B 28, 5632–5642.

    Article  Google Scholar 

  • Witten, T. A. and L. M. Sander. 1981. Diffusion-limited aggregation, a kinetic critical phenomenon.Phys. Rev. Lett. 47, 1400–1403.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stollberg, J. Density and diffusion limited aggregation in membranes. Bltn Mathcal Biology 57, 651–677 (1995). https://doi.org/10.1007/BF02461845

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02461845

Keywords

Navigation