Skip to main content
Log in

Gyrotaxis: Interaction between algae and flagellates

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We describe the behaviour of motile microorganisms (e.g. flagellates) attracted by “gyrotaxis” to a sinking, non-motile particle (e.g. an algal cell). The model is based on the application of Stokes' solution for the flow field around the settling cell. The volume within which the flagellate is attracted to the sinking particle is determined from the trajectories of the flagellate. The model of gyrotaxis has several applications; these include the colonization of sinking marine snow particles with motile microoganisms and suspension feeding by protozoa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alldredge, A. L. and M. W. Silver. 1988. Characteristics, dynamics and significance of marine snow.Prog. Oceanogr. 20, 41–82.

    Article  Google Scholar 

  • Azam, F. and J. W. Ammerman. 1984. Cycling of organic matter by bacterioplankton in pelagic marine ecosystems: microenvironmental considerations. InFlows of Energy and Material in Marine Ecosystems, M. J. R. Fasham (Ed.), pp. 345–360. New York: Plenum Press.

    Google Scholar 

  • Batchelor, G. K. 1967.An Introduction to Fluid Dynamics. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Childress, S., M. A. R. Koehl, and M. Miksis. 1987. Scanning currents in Stokes'flow and the efficient feeding of small organisms.J. Fluid Mech. 177, 407–436.

    Article  MATH  Google Scholar 

  • Davis, H. T. 1960.Introduction to Nonlinear Differential and Integral Equations. New York: Dover.

    Google Scholar 

  • Fenchel, T. 1982a. Ecology of heterotrophic microflagellates. II. Bioenergetics and growth.Mar. Ecol. Prog. Ser. 8, 225–231.

    Google Scholar 

  • Fenchel, T. 1982b. Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as consumers of bacteria.Mar. Ecol. Prog. Ser. 9, 35–42.

    Google Scholar 

  • Fenchel, T. 1984. Suspended marine bacteria as a food source. InFlows of Energy and Materials in Marine Ecosystems. M. J. R. Fasham (Ed.), pp. 301–315. New York: Plenum Press.

    Google Scholar 

  • Fenchel, T. 1986. Protozoan filter feeding.Prog. Protistol. 1, 65–113.

    Google Scholar 

  • Fenchel, T. 1988. Marine plankton food chains.Ann. Rev. Ecol. Syst. 19, 19–38.

    Article  Google Scholar 

  • Goldman, J. C. 1984. Conceptual role for microaggregates in pelagic waters.Bull. Mar. Sci. 35, 462–476.

    Google Scholar 

  • Hansen, J. L. S., M. Olesen and U. Timm. A new method for determining the potential of particle flocculation.Mar. Biol. (submitted).

  • Happel, J. and H. Brenner. 1965.Low Reynolds Number Hydrodynamics. Dordrecht: Kluwer.

    Google Scholar 

  • Hawley, N. 1982. Settling velocity distribution of natural aggregates.J. geophys. Res. 87(C12), 9489–9498.

    Article  Google Scholar 

  • Jackson, G. A. 1987. Physical and chemical properties of aquatic environments. InEcology of Microbial Communities M. Fletcheret al. (Eds), pp. 213–233. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jackson, G. A. 1989. Simulation of bacterial attraction and adhesion to falling particles in an aquatic environment.Limnol. Oceanogr. 34, 514–530.

    Google Scholar 

  • Kessler, J. O. 1984. Cyrotactic buoyant convection and spontaneous pattern formation in algal cell cultures. In:Non-equilibrium Co-operative Phenomena in Physics and Related Field, M. G. Velarde (Ed.), pp. 241–248. New York: Plenum Press.

    Google Scholar 

  • Kessler, J. O. 1985a. Co-operative and concentrative phenomena of swimming microorganisms.Contemp. Phys. 26, 147–166.

    Google Scholar 

  • Kessler, J. O. 1985b. Hydrodynamics focusing of motile algal cells.Nature 313, 218–220.

    Article  Google Scholar 

  • Lamb, H. 1945.Hydrodynamics. New York: Dover.

    Google Scholar 

  • Legier-Visser, M. F., J. G. Mitchell, A. Okubo and J. A. Fuhrman. 1986. Mechanoreception in calanoid copepods: a mechanism for prey detection.Mar. Biol. 90, 529–535.

    Article  Google Scholar 

  • Levandowsky, M., S. Childress, E. A. Spiegel and S. H. Hunter. 1975. A mathematical model of pattern formation by swimming micro-organisms.J. Protozool. 22, 296–306.

    Google Scholar 

  • Mitchell, J. G., A. Okubo and J. A. Fuhrman. 1985. Microzones surrounding phytoplankton form the basis for a stratified microbial ecosystem.Nature 316, 58–59.

    Article  Google Scholar 

  • Mitchell, J. G. 1988.Microplankton live in a standard environment. Ph.D. dissertation, State University of New York, Stony Brook, 233 pp.

    Google Scholar 

  • Mitchell, J. G., A. Okubo and J. A. Fuhrman. 1990. Gyrotaxis as a new mechanism for generating spatial heterogeneity and migration in microplakton.Limnol. Oceanogr. 35, 123–129.

    Article  Google Scholar 

  • Monger, B. C. and M. R. Landry. 1990. Direct-interception feeding by marine zooflagellates: the importance of suface and hydrodynamic forces.Mar. Ecol. Prog. Ser. 65, 123–140.

    Google Scholar 

  • Okubo, A. 1988. Planktonic micro-communities in the sea: biofluid mechanical review. InLecture Notes in Biomathematics (Vol. 77). Community Ecology, A. Hastings (Ed.), pp. 13–24. New York: Springer-Verlag.

    Google Scholar 

  • Pedley, T. J., N. A. Hill and J. O. Kessler. 1988. The growth of bioconvection patterns in a uniform suspension of gyrotactic micro-organisms.J. Fluid Mech. 195, 223–237.

    Article  MATH  MathSciNet  Google Scholar 

  • Pedley, T. J. and J. O. Kessler. 1987. The orientation of spheroidal micro-organisms swimming in a flow field.Proc. R. Soc. Lond. B 239, 47–70.

    Article  Google Scholar 

  • Pedley, T. J. and J. O. Kessler. 1990. A new continuum model for suspensions of gyrotactic micro-organisms.J. Fluid Mech. 212, 155–182.

    Article  MATH  MathSciNet  Google Scholar 

  • Shimeta, J. and P. A. Jumars. 1991. Physical mechanisms and rates of particle capture by suspension feeders.Oceanogr. Mar. Biol. Ann. Rev. 29, 191–257.

    Google Scholar 

  • Spielman, L. A. 1977. Particle capture from low-speed laminar flows.Ann. Rev. Fluid. Mech. 9, 297–319.

    Article  MATH  Google Scholar 

  • Timm, U. and A. Okubo. 1994. Gyrotaxis: a plume model for self-focusing micro-organisms.Bull. math. Biol. 56, 187–206.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Timm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timm, U., Okubo, A. Gyrotaxis: Interaction between algae and flagellates. Bltn Mathcal Biology 57, 631–650 (1995). https://doi.org/10.1007/BF02461844

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02461844

Keywords

Navigation