Skip to main content
Log in

A model of an autocatalytic network formed by error-prone self-replicative species

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A generalized model ofn catalytically-coupled self-replicative molecules witherror-prone replication is presented. A generalized mathematical formulation of this model and the outline of its asymptotic behaviour have been developed. Due to the complexity of the model, only in simple situations is it possible to draw general conclusions from the standard analysis. Some complex situations are illustrated by means of numerical integration of particular examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Andrade, M. A., A. Garcia-Tejedor and F. Montero. 1991. Study of an error-prone hypercycle formed from two kinetically distinguishable species.Biophys. Chem. 40, 43–57.

    Article  Google Scholar 

  • Andrade, M.A., J.C. Nuño, F. Morán, F. Montero and G. J. Mpitsos. 1992. Complex dynamics of a catalytic network having faulty replication into an error species. Preprint.

  • Cech, T. R. and B. L. Bass. 1986. Biological catalysis by RNA.A. Rev. Biochem. 55, 599–630.

    Article  Google Scholar 

  • Cech, T. R. 1989. Ribozyme self-replication?Nature 339, 507–508.

    Article  Google Scholar 

  • Cech, T. R. 1990. Self-splicing of group I introns.A. Rev. Biochem. 59, 543–568.

    Article  Google Scholar 

  • Doudna, J. A. and J. W. Szostak. 1989. RNA-catalysed synthesis of complementary-strand RNA.Nature 339, 519–522.

    Article  Google Scholar 

  • Eigen, M. 1971. Self-organization of matter and the evolution of biological macromolecules.Naturwissenschaften 58, 465–523.

    Article  Google Scholar 

  • Eigen, M. and P. Schuster. 1979.The Hypercycle—A Principle of Natural Self-Organization. Berlin: Springer-Verlag.

    Google Scholar 

  • Eigen, M., J. McCaskill and P. Schuster. 1989. The molecular quasi-species.Adv. Chem. Phys. 75, 149–263.

    Google Scholar 

  • Farmer, J. D., S. A. Kauffman and N. H. Packard. 1986a. Autocatalytic replication of polymers.Physica D 22, 50–67.

    Article  MathSciNet  Google Scholar 

  • Farmer, J. D., N. H. Packard and A. S. Perelson. 1986b. The immune system, adaptation, and machine learning.Physica D 22, 187–204.

    Article  MathSciNet  Google Scholar 

  • Farmer, J. D. 1990. A rosetta stone for connectionism.Physica D 42, 153–187.

    Article  MathSciNet  Google Scholar 

  • García-Tejedor, A., F. Morán and F. Montero. 1987. Influence of the hypercyclic organization on the error threshold.J. theor. Biol. 127, 393–402.

    Article  Google Scholar 

  • García-Tejedor, A., J. C. Sanz-Nuño, J. Olarrea, F. J. De la Rubia and F. Montero. 1988. Influence of the hypercycle on the error threshold: a stochastic approach.J. theor. Biol. 134, 431–443.

    Article  Google Scholar 

  • Hadeler, K. P. 1981. Stable polymorfisms in a selection model with mutation.SIAM J. appl. Math. 41, 1–7.

    Article  MathSciNet  Google Scholar 

  • Hofbauer, J., P. Schuster, K. Sigmund and R. Wolff. 1980. Dynamical systems under constant organization II: homogeneous growth functions of degreep=2.SIAM J. appl. Math. 38, 282–304.

    Article  MATH  MathSciNet  Google Scholar 

  • Hofbauer, J. 1985. The selection mutation equation.J. math. Biol. 23, 41–53.

    MATH  MathSciNet  Google Scholar 

  • Hofbauer, J. and K. Sigmund. 1988.The Theory of Evolution and Dynamical Systems. Cambridge, U.K., Cambridge University Press.

    Google Scholar 

  • Küppers, B. O. 1983.Molecular Theory of Evolution, Berlin: Springer-Verlag.

    Google Scholar 

  • Nowak, M. and P. Schuster. 1989. Error thresholds of replication in finite populations mutation frequencies and the onset of Muller's ratchet.J. theor. Biol. 137, 375–395.

    Google Scholar 

  • Parisi, G. 1990. A simple model for the immune network.PNAS 87, 429–433.

    Article  Google Scholar 

  • Schnabl, W., P. F. Stadler, C. Forst and P. Schuster. 1991. Full characterization of a strange attractor.Physica D 48, 65–90.

    Article  MATH  MathSciNet  Google Scholar 

  • Schuster, P., K. Sigmund and R. Wolff. 1979. Dynamical systems under constant organization. III. Cooperative and competitive behavior of hypercycles.J. diff. Eq. 32, 357–368.

    Article  MATH  MathSciNet  Google Scholar 

  • Schuster, P. 1986. Dynamics of molecular evolution.Physica D 22, 100–119.

    Article  MathSciNet  Google Scholar 

  • Schuster, P. 1987. Structure and dynamics of replication mutation systems.Phys. Scripta 35, 402–416.

    MATH  MathSciNet  Google Scholar 

  • Stadler, P. F. and P. Schuster. 1990. Dynamics of small autocatalytic reaction networks—I. Bifurcations, permanence and exclusion.Bull. math. Biol. 53, 485–508.

    Google Scholar 

  • Stadler, P. F. and P. Schuster. 1992. Mutation in autocatalytic reaction networks: an analysis based on perturbation theory.J. math. Biol., to appear.

  • Stadler, P. F., W. Schnabl, C. Forst and P. Schuster. 1990.Math. Biosci., submitted.

  • Swetina, J. and P. Schuster. 1982. Self-replication with errors. A model for polynucleotide replication.Biophys. Chem. 16, 329–345.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Montero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nuño, J.C., Andrade, M.A., Morán, F. et al. A model of an autocatalytic network formed by error-prone self-replicative species. Bltn Mathcal Biology 55, 385–415 (1993). https://doi.org/10.1007/BF02460889

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460889

Keywords

Navigation