Skip to main content
Log in

Reliable segmentation by successive bifurcation

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In many organisms, a reliable number of segments is produced even though important properties of the region involved, especially its size at the time of pattern formation, are apparently not specified with sufficient precision. We show that this can be readily accomplished if segmentation occurs through a sequence of bifurcations rather than all at once, and we provide evidence from developmental studies that indicates that this is typically what actually occurs. Our results strongly suggest that where patterns are formed reliably, this generally happens in stages rather than by the setting up in advance of a complete prepattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akam, M. 1987. The molecular basis for metameric pattern in theDrosophila embryo.Development 101, 1–22.

    Google Scholar 

  • Arcuri, P. and J. D. Murray. 1986. Pattern sensitivity to boundary and initial conditions in reaction-diffusion models.J. math. Biol. 24, 141–165.

    Article  MATH  MathSciNet  Google Scholar 

  • Carr, J. N. and P. H. Taghert. 1989. Pair-rule expression of a cell surface molecule during gastrulation of the moth embryo.Development 107, 143–151.

    Google Scholar 

  • Coulter, D. and E. Wieschaus. 1987. Segmentation genes and the distributions of transcripts. News and views.Nature 321, 472–474.

    Article  Google Scholar 

  • Davidson, D. 1983. The mechanism of feather pattern development in the chick. I. The time of determination of feather position. II. Control of the sequence of pattern formation.J. Embryol. exp. Morph. 74, 245–273.

    Google Scholar 

  • Fleig, R. and K. Sander 1986. Embryogenesis of the honeybeeApis mellifera L. (Hymenoptera: Apidae): an SEM study.Int. J. Insect Morphol. Embryol. 15, 449–462.

    Article  Google Scholar 

  • Gambles, P. 1985. Outlines of the distant past.Nature 314, 430–404.

    Article  Google Scholar 

  • Goodwin, B. C. 1984. A relational or field theory of reproduction and its evolutionary implications. InBeyond Neo-Darwinism: An Introduction to the New Evolutionary Paradigm, M. W. Ho and P. T. Saunders (Eds), pp. 219–241. London: Academic Press.

    Google Scholar 

  • Goodwin, B. C. and S. A. Kauffman. 1990. Spatial harmonics and pattern specification in earlyDrosophila development. Part I: Bifurcation sequences and gene expression.J. theor. Biol. 144, 303.

    Google Scholar 

  • Gould, S. J. 1990.Wonderful Life. New York: W. W. Norton.

    Google Scholar 

  • Ho, M. W. 1984. Heredity and evolution. InBeyond neo-Darwinism: Introduction to the New Evolutionary Paradigm, M. W. Ho and P. T. Saunders (Eds), pp. 267–289. London: Academic Press.

    Google Scholar 

  • Ho, M. W. 1990. An exercise in rational taxonomy.J. theor. Biol. 147, 43–57.

    Google Scholar 

  • Ho, M. W., A. Matheson, P. T. Saunders, B. C. Goodwin and A. Smallcombe. 1987. Ether-induced disturbances in segmentation inDrosophila melanogaster.Roux Arch. Devl. Biol. 196, 511–521.

    Article  Google Scholar 

  • Ho, M. W., T. A. Stone, I. Jerman, J. Bolton, H. Bolton, B. C. Goodwin, P. T. Saunders and F. Robertson. 1992. Briexf exposure to weak static magnetic fields during early embryogenesis causes cuticular pattern abnormalities inDrosophila larvae.Phys. Med. Biol. 37, 1171–1179.

    Article  Google Scholar 

  • Hunding, A. and P. G. Soerensen. 1988. Size adaptation of Turing prepatterns.J. math. Biol. 26, 27–39.

    MATH  MathSciNet  Google Scholar 

  • Hunding, A., S. A. Kauffman and B. C. Goodwin. 1990.Drosophila segmentation: supercomputer simulation of prepattern hierarchy.J. theor. Biol. 145, 369–384.

    Google Scholar 

  • Kaufmann, S. A. 1981. Pattern formation in theDrosophila embryo.Phil. Trans. R. Soc. Lond. B295, 567–594.

    Google Scholar 

  • Lacalli, T. C., D. A. Wilkinson and L. G. Harrison. 1988. Theoretical aspects of stripe formation in relation toDrosophila segmentation.Development 103, 105–113.

    Google Scholar 

  • Le Guyader, H. and C. Hyver. 1990. Modelling of the duplication of cortical units along a kinety ofParamecium using reaction-diffusion equations.J. theor. Biol. 143, 233–250.

    Google Scholar 

  • Maini, P. and J. D. Murray. 1988. A nonlinear analysis of a mechanical model for biological pattern formation.SIAM J. appl. Math. 48, 1064–1072.

    Article  MATH  MathSciNet  Google Scholar 

  • Maynard Smith, J. 1960. Continuous, quantized and modal variation.Proc. Roy. Soc. London B152, 397–409.

    Article  Google Scholar 

  • Meinhardt, H. 1988. Models for maternally supplied positional information and the activation of segmentation genes inDrosophila embryogenesis.Development 104 (Suppl.) 95–110.

    Google Scholar 

  • Murray, J. D. 1981. A pre-pattern mechanism for animal coat markings.J. theor. Biol. 88, 161–199.

    Article  Google Scholar 

  • Murray, J. D. 1989.Mathematical Biology. Berlin: Springer.

    MATH  Google Scholar 

  • Nagorcka, B. N. 1989. Wavelike isomorphic patterns in development.J. theor. Biol. 137, 127–162.

    MathSciNet  Google Scholar 

  • Nusslein-Volhard, C. and E. Wieschaus. 1980. Mutations affecting segment number and polarity in Drosophila.Nature 287, 795–801.

    Article  Google Scholar 

  • Othmer, H. G. and E. Pate. 1980. Scale-invariance in reaction-diffusion models of spatial pattern formation.Proc. Nat. Acad. Sci. USA 77, 4180–4184.

    Article  Google Scholar 

  • Perelson, A. S., P. K. Maini, J. D. Murray, J. M. Hyman and G. F. Oster. 1986.J. math. Biol. 24, 525–541.

    Article  MATH  MathSciNet  Google Scholar 

  • Perkins, L. A., I. Larsen and N. Perrimon. 1992.Corkscrew encodes a putative protein tyrosine phosphotase that functions to transduce the terminal signal from the receptor tyrosine kinase torso.Cell 70, 225–236.

    Article  Google Scholar 

  • Primmett, D. R. N., C. D. Stern and R. J. Keynes. 1988. Heat shock causes repeated segmental anomalies in the chick embryo.Development 104, 331–339.

    Google Scholar 

  • Sander, K. 1976. Specification of the basic body pattern in insect embryogenesis.Adv. Insect Physiol. 12, 125–238.

    Article  Google Scholar 

  • Sander, K. 1988. Studies in insect segmentation: from terotology to phenogenetics.Development 104 (Suppl), 112–121.

    Google Scholar 

  • Sander, K., M. Lohs-Schardin and M. Baumann. 1980. Embryogenesis in aDrosophila, mutant expressing half the normal segment number.Nature 287, 841–843.

    Article  Google Scholar 

  • Saunders, P. T. 1993. The organism as a dynamical system. InThinking about Biology, SFI Studies in the Sciences of Complexity, Lecture Notes Vol. III, W. Stein and F. Varela (Eds). Reading, Massachusetts: Addison Wesley.

    Google Scholar 

  • Turing, A. 1952. The chemical basis of morphogenesis.Phil. Trans. Roy. Soc. B237, 37–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saunders, P.T., Ho, M.W. Reliable segmentation by successive bifurcation. Bltn Mathcal Biology 57, 539–556 (1995). https://doi.org/10.1007/BF02460782

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460782

Keywords

Navigation